ﻻ يوجد ملخص باللغة العربية
We present a condition for towers of fiber bundles which implies that the fundamental group of the total space has a nilpotent subgroup of finite index whose torsion is contained in its center. Moreover, the index of the subgroup can be bounded in terms of the fibers of the tower. Our result is motivated by the conjecture that every almost nonnegatively curved closed m-dimensional manifold M admits a finite cover M for which the number of leafs is bounded in terms of m such that the torsion of the fundamental group of M lies in its center.
We show that the analogue of the Peterson conjecture on the action of Steenrod squares does not hold in motivic cohomology.
We present another view dealing with the Arnold-Givental conjecture on a real symplectic manifold $(M, omega, tau)$ with nonempty and compact real part $L={rm Fix}(tau)$. For given $Lambdain (0, +infty]$ and $minNcup{0}$ we show the equivalence of
We study the analytic torsion of odd-dimensional hyperbolic orbifolds $Gamma backslash mathbb{H}^{2n+1}$, depending on a representation of $Gamma$. Our main goal is to understand the asymptotic behavior of the analytic torsion with respect to sequenc
The evenness conjecture for the equivariant unitary bordism groups states that these bordism groups are free modules over the unitary bordism ring on even-dimensional generators. In this paper we review the cases in which the conjecture is known to h
Let an n-algebra mean an algebra over the chain complex of the little n-cubes operad. We give a proof of Kontsevichs conjecture, which states that for a suitable notion of Hochschild cohomology in the category of n-algebras, the Hochschild cohomology