ترغب بنشر مسار تعليمي؟ اضغط هنا

On Kontsevichs Hochschild cohomology conjecture

116   0   0.0 ( 0 )
 نشر من قبل Alexander A. Voronov
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let an n-algebra mean an algebra over the chain complex of the little n-cubes operad. We give a proof of Kontsevichs conjecture, which states that for a suitable notion of Hochschild cohomology in the category of n-algebras, the Hochschild cohomology complex of an n-algebra is an (n+1)-algebra. This generalizes a conjecture by Deligne for n=1, now proven by several authors.



قيم البحث

اقرأ أيضاً

285 - Gregory Ginot , Sinan Yalin 2016
A first goal of this paper is to precisely relate the homotopy theories of bialgebras and $E_2$-algebras. For this, we construct a conservative and fully faithful $infty$-functor from pointed conilpotent homotopy bialgebras to augmented $E_2$-algebra s which consists in an appropriate cobar construction. Then we prove that the (derived) formal moduli problem of homotopy bialgebras structures on a bialgebra is equivalent to the (derived) formal moduli problem of $E_2$-algebra structures on this cobar construction. We show consequently that the $E_3$-algebra structure on the higher Hochschild complex of this cobar construction, given by the solution to the higher Deligne conjecture, controls the deformation theory of this bialgebra. This implies the existence of an $E_3$-structure on the deformation complex of a dg bialgebra, solving a long-standing conjecture of Gerstenhaber-Schack. On this basis we solve a long-standing conjecture of Kontsevich, by proving the $E_3$-formality of the deformation complex of the symmetric bialgebra. This provides as a corollary a new proof of Etingof-Kazdhan deformation quantization of Lie bialgebras which extends to homotopy dg Lie bialgebras and is independent from the choice of an associator. Along the way, we establish new general results of independent interest about the deformation theory of algebraic structures, which shed a new light on various deformation complexes and cohomology theories studied in the literature.
We use factorization homology and higher Hochschild (co)chains to study various problems in algebraic topology and homotopical algebra, notably brane topology, centralizers of $E_n$-algebras maps and iterated bar constructions. In particular, we obta in an $E_{n+1}$-algebra model on the shifted integral chains of the mapping space of the n-sphere into an orientable closed manifold $M$. We construct and use $E_infty$-Poincare duality to identify higher Hochschild cochains, modeled over the $n$-sphere, with the chains on the above mapping space, and then relate Hochschild cochains to the deformation complex of the $E_infty$-algebra $C^*(M)$, thought of as an $E_n$-algebra. We invoke (and prove) the higher Deligne conjecture to furnish $E_n$-Hochschild cohomology, and all that is naturally equivalent to it, with an $E_{n+1}$-algebra structure. We prove that this construction recovers the sphere product. In fact, our approach to the Deligne conjecture is based on an explicit description of the $E_n$-centralizers of a map of $E_infty$-algebras $f:Ato B$ by relating it to the algebraic structure on Hochschild cochains modeled over spheres, which is of independent interest and explicit. More generally, we give a factorization algebra model/description of the centralizer of any $E_n$-algebra map and a solution of Deligne conjecture. We also apply similar ideas to the iterated bar construction. We obtain factorization algebra models for (iterated) bar construction of augmented $E_m$-algebras together with their $E_n$-coalgebras and $E_{m-n}$-algebra structures, and discuss some of its features. For $E_infty$-algebras we obtain a higher Hochschild chain model, which is an $E_n$-coalgebra. In particular, considering an n-connected topological space $Y$, we obtain a higher Hochschild cochain model of the natural $E_n$-algebra structure of the chains of the iterated loop space of $Y$.
In this paper we construct a graded Lie algebra on the space of cochains on a $mathbbZ_2$-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetri zation; the coboundary operator is a skew-symmetrized version of the Hochschild differential. We show that an order-one element $m$ satisfying the zero-square condition $[m,m]=0$ defines an algebraic structure called Lie antialgebra. The cohomology (and deformation) theory of these algebras is then defined. We present two examples of non-trivial cohomology classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hoc hschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computations from our paper with Shroff for diagonal actions. By combining our work with recent results of Levandovskyy and Shepler, we produce examples of quantum Drinfeld Hecke algebras. These algebras generalize the braided Cherednik algebras of Bazlov and Berenstein.
Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When this bimodule algebra is a finite group extension (under a diagonal action) of a quantum symmetric algebra, we give explicitly the graded vector space structure. This yields a complete description of the Hochschild cohomology ring of the corresponding skew group algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا