ﻻ يوجد ملخص باللغة العربية
We present another view dealing with the Arnold-Givental conjecture on a real symplectic manifold $(M, omega, tau)$ with nonempty and compact real part $L={rm Fix}(tau)$. For given $Lambdain (0, +infty]$ and $minNcup{0}$ we show the equivalence of the following two claims: (i) $sharp(Lcapphi^H_1(L))ge m$ for any Hamiltonian function $Hin C_0^infty([0, 1]times M)$ with Hofers norm $|H|<Lambda$; (ii) $sharp {cal P}(H,tau)ge m$ for every $Hin C^infty_0(R/Ztimes M)$ satisfying $H(t,x)=H(-t,tau(x));forall (t,x)inmathbb{R}times M$ and with Hofers norm $|H|<2Lambda$, where ${cal P}(H, tau)$ is the set of all $1$-periodic solutions of $dot{x}(t)=X_{H}(t,x(t))$ satisfying $x(-t)=tau(x(t));forall tinR$ (which are also called brake orbits sometimes). Suppose that $(M, omega)$ is geometrical bounded for some $Jin{cal J}(M,omega)$ with $tau^ast J=-J$ and has a rationality index $r_omega>0$ or $r_omega=+infty$. Using Hofers method we prove that if the Hamiltonian $H$ in (ii) above has Hofers norm $|H|<r_omega$ then $sharp(Lcapphi^H_1(L))gesharp {cal P}_0(H,tau)ge {rm Cuplength}_{F}(L)$ for $F=Z_2$, and further for $F=Z$ if $L$ is orientable, where ${cal P}_0(H,tau)$ consists of all contractible solutions in ${cal P}(H,tau)$.
Around 1988, Floer introduced two important theories: instanton Floer homology as invariants of 3-manifolds and Lagrangian Floer homology as invariants of pairs of Lagrangians in symplectic manifolds. Soon after that, Atiyah conjectured that the two
We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group $SSympeo(M,omega)$ of strong symplectic homeomorphisms, which generalizes the grou
We calculate the local Riemann-Roch numbers of the zero sections of $T^*S^n$ and $T^*R P^n$, where the local Riemann-Roch numbers are defined by using the $S^1$-bundle structure on their complements associated to the geodesic flows.
We present a condition for towers of fiber bundles which implies that the fundamental group of the total space has a nilpotent subgroup of finite index whose torsion is contained in its center. Moreover, the index of the subgroup can be bounded in te
A strong version of a conjecture of Viterbo asserts that all normalized symplectic capacities agree on convex domains. We review known results showing that certain specific normalized symplectic capacities agree on convex domains. We also review why