ﻻ يوجد ملخص باللغة العربية
Most natural videos contain numerous events. For example, in a video of a man playing a piano, the video might also contain another man dancing or a crowd clapping. We introduce the task of dense-captioning events, which involves both detecting and describing events in a video. We propose a new model that is able to identify all events in a single pass of the video while simultaneously describing the detected events with natural language. Our model introduces a variant of an existing proposal module that is designed to capture both short as well as long events that span minutes. To capture the dependencies between the events in a video, our model introduces a new captioning module that uses contextual information from past and future events to jointly describe all events. We also introduce ActivityNet Captions, a large-scale benchmark for dense-captioning events. ActivityNet Captions contains 20k videos amounting to 849 video hours with 100k total descriptions, each with its unique start and end time. Finally, we report performances of our model for dense-captioning events, video retrieval and localization.
Video paragraph captioning aims to describe multiple events in untrimmed videos with descriptive paragraphs. Existing approaches mainly solve the problem in two steps: event detection and then event captioning. Such two-step manner makes the quality
We introduce the task of dense captioning in 3D scans from commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene; the expected output is the bounding boxes along with the descriptions for the underlying objects. To address the 3D o
Multi-person event recognition is a challenging task, often with many people active in the scene but only a small subset contributing to an actual event. In this paper, we propose a model which learns to detect events in such videos while automatical
Dense video captioning aims to generate multiple associated captions with their temporal locations from the video. Previous methods follow a sophisticated localize-then-describe scheme, which heavily relies on numerous hand-crafted components. In thi
With the advent of drones, aerial video analysis becomes increasingly important; yet, it has received scant attention in the literature. This paper addresses a new problem of parsing low-resolution aerial videos of large spatial areas, in terms of 1)