ﻻ يوجد ملخص باللغة العربية
Video paragraph captioning aims to describe multiple events in untrimmed videos with descriptive paragraphs. Existing approaches mainly solve the problem in two steps: event detection and then event captioning. Such two-step manner makes the quality of generated paragraphs highly dependent on the accuracy of event proposal detection which is already a challenging task. In this paper, we propose a paragraph captioning model which eschews the problematic event detection stage and directly generates paragraphs for untrimmed videos. To describe coherent and diverse events, we propose to enhance the conventional temporal attention with dynamic video memories, which progressively exposes new video features and suppresses over-accessed video contents to control visual focuses of the model. In addition, a diversity-driven training strategy is proposed to improve diversity of paragraph on the language perspective. Considering that untrimmed videos generally contain massive but redundant frames, we further augment the video encoder with keyframe awareness to improve efficiency. Experimental results on the ActivityNet and Charades datasets show that our proposed model significantly outperforms the state-of-the-art performance on both accuracy and diversity metrics without using any event boundary annotations. Code will be released at https://github.com/syuqings/video-paragraph.
Existing video self-supervised learning methods mainly rely on trimmed videos for model training. However, trimmed datasets are manually annotated from untrimmed videos. In this sense, these methods are not really self-supervised. In this paper, we p
Observing a set of images and their corresponding paragraph-captions, a challenging task is to learn how to produce a semantically coherent paragraph to describe the visual content of an image. Inspired by recent successes in integrating semantic top
Recent captioning models are limited in their ability to scale and describe concepts unseen in paired image-text corpora. We propose the Novel Object Captioner (NOC), a deep visual semantic captioning model that can describe a large number of object
Weakly-supervised Temporal Action Localization (WTAL) aims to detect the action segments with only video-level action labels in training. The key challenge is how to distinguish the action of interest segments from the background, which is unlabelled
Most natural videos contain numerous events. For example, in a video of a man playing a piano, the video might also contain another man dancing or a crowd clapping. We introduce the task of dense-captioning events, which involves both detecting and d