ترغب بنشر مسار تعليمي؟ اضغط هنا

End-to-End Dense Video Captioning with Parallel Decoding

257   0   0.0 ( 0 )
 نشر من قبل Teng Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense video captioning aims to generate multiple associated captions with their temporal locations from the video. Previous methods follow a sophisticated localize-then-describe scheme, which heavily relies on numerous hand-crafted components. In this paper, we proposed a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. In practice, through stacking a newly proposed event counter on the top of a transformer decoder, the PDVC precisely segments the video into a number of event pieces under the holistic understanding of the video content, which effectively increases the coherence and readability of predicted captions. Compared with prior arts, the PDVC has several appealing advantages: (1) Without relying on heuristic non-maximum suppression or a recurrent event sequence selection network to remove redundancy, PDVC directly produces an event set with an appropriate size; (2) In contrast to adopting the two-stage scheme, we feed the enhanced representations of event queries into the localization head and caption head in parallel, making these two sub-tasks deeply interrelated and mutually promoted through the optimization; (3) Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art two-stage methods when its localization accuracy is on par with them. Code is available at https://github.com/ttengwang/PDVC.



قيم البحث

اقرأ أيضاً

We propose a high-level concept word detector that can be integrated with any video-to-language models. It takes a video as input and generates a list of concept words as useful semantic priors for language generation models. The proposed word detect or has two important properties. First, it does not require any external knowledge sources for training. Second, the proposed word detector is trainable in an end-to-end manner jointly with any video-to-language models. To maximize the values of detected words, we also develop a semantic attention mechanism that selectively focuses on the detected concept words and fuse them with the word encoding and decoding in the language model. In order to demonstrate that the proposed approach indeed improves the performance of multiple video-to-language tasks, we participate in four tasks of LSMDC 2016. Our approach achieves the best accuracies in three of them, including fill-in-the-blank, multiple-choice test, and movie retrieval. We also attain comparable performance for the other task, movie description.
103 - Lu He , Qianyu Zhou , Xiangtai Li 2021
Recently, DETR and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Obj ect Detection (VOD) has not been well explored. In this paper, we present TransVOD, an end-to-end video object detection model based on a spatial-temporal Transformer architecture. The goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow, recurrent neural networks, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS or Tubelet rescoring, which keeps the pipeline simple and clean. In particular, we present temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal Transformer consists of three components: Temporal Deformable Transformer Encoder (TDTE) to encode the multiple frame spatial details, Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (3%-4% mAP) on the ImageNet VID dataset. TransVOD yields comparable results performance on the benchmark of ImageNet VID. We hope our TransVOD can provide a new perspective for video object detection. Code will be made publicly available at https://github.com/SJTU-LuHe/TransVOD.
We address the problem of text-guided video temporal grounding, which aims to identify the time interval of certain event based on a natural language description. Different from most existing methods that only consider RGB images as visual features, we propose a multi-modal framework to extract complementary information from videos. Specifically, we adopt RGB images for appearance, optical flow for motion, and depth maps for image structure. While RGB images provide abundant visual cues of certain event, the performance may be affected by background clutters. Therefore, we use optical flow to focus on large motion and depth maps to infer the scene configuration when the action is related to objects recognizable with their shapes. To integrate the three modalities more effectively and enable inter-modal learning, we design a dynamic fusion scheme with transformers to model the interactions between modalities. Furthermore, we apply intra-modal self-supervised learning to enhance feature representations across videos for each modality, which also facilitates multi-modal learning. We conduct extensive experiments on the Charades-STA and ActivityNet Captions datasets, and show that the proposed method performs favorably against state-of-the-art approaches.
Estimating eye-gaze from images alone is a challenging task, in large parts due to un-observable person-specific factors. Achieving high accuracy typically requires labeled data from test users which may not be attainable in real applications. We obs erve that there exists a strong relationship between what users are looking at and the appearance of the users eyes. In response to this understanding, we propose a novel dataset and accompanying method which aims to explicitly learn these semantic and temporal relationships. Our video dataset consists of time-synchronized screen recordings, user-facing camera views, and eye gaze data, which allows for new benchmarks in temporal gaze tracking as well as label-free refinement of gaze. Importantly, we demonstrate that the fusion of information from visual stimuli as well as eye images can lead towards achieving performance similar to literature-reported figures acquired through supervised personalization. Our final method yields significant performance improvements on our proposed EVE dataset, with up to a 28 percent improvement in Point-of-Gaze estimates (resulting in 2.49 degrees in angular error), paving the path towards high-accuracy screen-based eye tracking purely from webcam sensors. The dataset and reference source code are available at https://ait.ethz.ch/projects/2020/EVE
We present a new video understanding pentathlon challenge, an open competition held in conjunction with the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020. The objective of the challenge was to explore and evaluate new methods for text-to-video retrieval-the task of searching for content within a corpus of videos using natural language queries. This report summarizes the results of the first edition of the challenge together with the findings of the participants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا