ﻻ يوجد ملخص باللغة العربية
We study some statistical properties for the behavior of the average squared velocity -- hence the temperature -- for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic leading the average squared velocity to reach a steady state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and, (ii) billiard dynamics using either numerical simulations and theoretical description.
Statistical properties for the recurrence of particles in an oval billiard with a hole in the boundary are discussed. The hole is allowed to move in the boundary under two different types of motion: (i) counterclockwise periodic circulation with a fi
Billiard systems offer a simple setting to study regular and chaotic dynamics. Gravitational billiards are generalizations of these classical billiards which are amenable to both analytical and experimental investigations. Most previous work on gravi
We study the collision between the cue and the ball in the game of billiards. After studying the collision process in detail, we write the (rotational) velocities of the ball and the cue after the collision. We also find the squirt angle of the ball
In generic Hamiltonian systems with a mixed phase space chaotic transport may be directed and ballistic rather than diffusive. We investigate one particular model showing this behaviour, namely a spatially periodic billiard chain in which electrons m
We apply periodic orbit theory to a two-dimensional non-integrable billiard system whose boundary is varied smoothly from a circular to an equilateral triangular shape. Although the classical dynamics becomes chaotic with increasing triangular deform