ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of stability islands in the recurrence of particles in a static oval billiard with holes

210   0   0.0 ( 0 )
 نشر من قبل Matheus Hansen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Statistical properties for the recurrence of particles in an oval billiard with a hole in the boundary are discussed. The hole is allowed to move in the boundary under two different types of motion: (i) counterclockwise periodic circulation with a fixed step length and; (ii) random movement around the boundary. After injecting an ensemble of particles through the hole we show that the surviving probability of the particles without recurring - without escaping - from the billiard is described by an exponential law and that the slope of the decay is proportional to the relative size of the hole. Since the phase space of the system exhibits islands of stability we show that there are preferred regions of escaping in the polar angle, hence given a partial answer to an open problem: {it Where to place a hole in order to maximize or minimize a suitable defined measure of escaping}.



قيم البحث

اقرأ أيضاً

We study some statistical properties for the behavior of the average squared velocity -- hence the temperature -- for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic leading the average squared velocity to reach a steady state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and, (ii) billiard dynamics using either numerical simulations and theoretical description.
We consider classical dynamical properties of a particle in a constant gravitational force and making specular reflections with circular, elliptic or oval boundaries. The model and collision map are described and a detailed study of the energy regime s is made. The linear stability of fixed points is studied, yielding exact analytical expressions for parameter values at which a period-doubling bifurcation occurs. The dynamics is apparently ergodic at certain energies in all three models, in contrast to the regularity of the circular and elliptic billiard dynamics in the field-free case. This finding is confirmed using a sensitive test involving Lyapunov weighted dynamics. In the last part of the paper a time dependence is introduced in the billiard boundary, where it is shown that for the circular billiard the average velocity saturates for zero gravitational force but in the presence of gravitational it increases with a very slow growth rate, which may be explained using Arnold diffusion. For the oval billiard, where chaos is present in the static case, the particle has an unlimited velocity growth with an exponent of approximately 1/6.
In generic Hamiltonian systems with a mixed phase space chaotic transport may be directed and ballistic rather than diffusive. We investigate one particular model showing this behaviour, namely a spatially periodic billiard chain in which electrons m ove under the influence of a perpendicular magnetic field. We analyze the phase-space structure and derive an explicit expression for the chaotic transport velocity. Unlike previous studies of directed chaos our model has a parameter regime in which the dispersion of an ensemble of chaotic trajectories around its moving center of mass is essentially diffusive. We explain how in this limit the deterministic chaos reduces to a biased random walk in a billiard with a rough surface. The diffusion constant for this simplified model is calculated analytically.
Billiard systems offer a simple setting to study regular and chaotic dynamics. Gravitational billiards are generalizations of these classical billiards which are amenable to both analytical and experimental investigations. Most previous work on gravi tational billiards has been concerned with two dimensional boundaries. In particular the case of linear boundaries, also known as the wedge billiard, has been widely studied. In this work, we introduce a three dimensional version of the wedge; that is, we study the nonlinear dynamics of a billiard in a constant gravitational field colliding elastically with a linear cone of half angle $theta$. We derive a two-dimensional Poincar{e} map with two parameters, the half angle of the cone and $ell$, the $z$-component of the billiards angular momentum. Although this map is sufficient to determine the future motion of the billiard, the three-dimensional nature of the physical trajectory means that a periodic orbit of the mapping does not always correspond to a periodic trajectory in coordinate space. We demonstrate several integrable cases of the parameter values, and analytically compute the systems fixed point, analyzing the stability of this orbit as a function of the parameters as well as its relation to the physical trajectory of the billiard. Next, we explore the phase space of the system numerically. We find that for small values of $ell$ the conic billiard exhibits behavior characteristic of two-degree-of-freedom Hamiltonian systems with a discontinuity, and the dynamics is qualitatively similar to that of the wedge billiard, although the correspondence is not exact. As we increase $ell$ the dynamics becomes on the whole less chaotic, and the correspondence with the wedge billiard is lost.
88 - Hyeong-Chan Kim 2021
We study the collision between the cue and the ball in the game of billiards. After studying the collision process in detail, we write the (rotational) velocities of the ball and the cue after the collision. We also find the squirt angle of the ball for an oblique collision which represents the deviation of the ball from the intended direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا