ﻻ يوجد ملخص باللغة العربية
We apply periodic orbit theory to a two-dimensional non-integrable billiard system whose boundary is varied smoothly from a circular to an equilateral triangular shape. Although the classical dynamics becomes chaotic with increasing triangular deformation, it exhibits an astonishingly pronounced shell effect on its way through the shape transition. A semiclassical analysis reveals that this shell effect emerges from a codimension-two bifurcation of the triangular periodic orbit. Gutzwillers semiclassical trace formula, using a global uniform approximation for the bifurcation of the triangular orbit and including the contributions of the other isolated orbits, describes very well the coarse-grained quantum-mechanical level density of this system. We also discuss the role of discrete symmetry for the large shell effect obtained here.
Billiard systems offer a simple setting to study regular and chaotic dynamics. Gravitational billiards are generalizations of these classical billiards which are amenable to both analytical and experimental investigations. Most previous work on gravi
We study some statistical properties for the behavior of the average squared velocity -- hence the temperature -- for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles
We study the collision between the cue and the ball in the game of billiards. After studying the collision process in detail, we write the (rotational) velocities of the ball and the cue after the collision. We also find the squirt angle of the ball
In generic Hamiltonian systems with a mixed phase space chaotic transport may be directed and ballistic rather than diffusive. We investigate one particular model showing this behaviour, namely a spatially periodic billiard chain in which electrons m
This is an easy-to-read introduction to foundations of deterministic chaos, deterministic diffusion and anomalous diffusion. The first part introduces to deterministic chaos in one-dimensional maps in form of Ljapunov exponents and dynamical entropie