ﻻ يوجد ملخص باللغة العربية
The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.
Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cool
We construct partially ionized hydrogen atmosphere models for magnetized neutron stars in radiative equilibrium with fixed surface fields between B=10^12 and 2x10^13 G and effective temperatures logT_eff=5.5-6.8, as well as with surface B and T_eff d
The discovery of photospheric absorption lines in XMM-Newton spectra of the X-ray bursting neutron star in EXO0748-676 by Cottam and collaborators allows us to constrain the neutron star mass-radius ratio from the measured gravitational redshift. A r
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for exploring the modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute event time stamps, su
The ultracompact low-mass X-ray binary 4U 1820-30 situated in the globular cluster NGC 6624 has an orbital period of only $approx$11.4 min which likely implies a white dwarf companion. The observed X-ray bursts demonstrate a photospheric radius expan