ترغب بنشر مسار تعليمي؟ اضغط هنا

Basic parameters of the helium accreting X-ray bursting neutron star in 4U 1820-30

138   0   0.0 ( 0 )
 نشر من قبل Valery Suleimanov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultracompact low-mass X-ray binary 4U 1820-30 situated in the globular cluster NGC 6624 has an orbital period of only $approx$11.4 min which likely implies a white dwarf companion. The observed X-ray bursts demonstrate a photospheric radius expansion phase and therefore are believed to reach the Eddington luminosity allowing us to estimate the mass and the radius of the neutron star (NS) in this binary. Here we re-analyse all Rossi X-ray Timing Explorer observations of the system and confirm that almost all the bursts took place during the hard persistent state of the system. This allows us to use the recently developed direct cooling tail method to estimate the NS mass and radius. However, because of the very short, about a second, duration of the cooling tail phases that can be described by the theoretical atmosphere models, the obtained constraints on the NS radius are not very strict. Assuming a pure helium NS atmosphere we found that the NS radius is in the range 10-12 km, if the NS mass is below 1.7 $M_odot$, and in a wider range of 8-12 km for a higher 1.7-2.0 $M_odot$ NS mass. The method also constrains the distance to the system to be 6.5$pm$0.5 kpc, which is consistent with the distance to the cluster. For the solar composition atmosphere, the NS parameters are in strong contradiction with the generally accepted range of possible NS masses and radii.


قيم البحث

اقرأ أيضاً

The persistently bright ultra-compact neutron star low-mass X-ray binary 4U 1820$-$30 displays a $sim$170 d accretion cycle, evolving between phases of high and low X-ray modes, where the 3 -- 10 keV X-ray flux changes by a factor of up to $approx 8$ . The source is generally in a soft X-ray spectral state, but may transition to a harder state in the low X-ray mode. Here, we present new and archival radio observations of 4U 1820$-$30 during its high and low X-ray modes. For radio observations taken within a low mode, we observed a flat radio spectrum consistent with 4U 1820$-$30 launching a compact radio jet. However, during the high X-ray modes the compact jet was quenched and the radio spectrum was steep, consistent with optically-thin synchrotron emission. The jet emission appeared to transition at an X-ray luminosity of $L_{rm X (3-10 keV)} sim 3.5 times 10^{37} (D/rm{7.6 kpc})^{2}$ erg s$^{-1}$. We also find that the low-state radio spectrum appeared consistent regardless of X-ray hardness, implying a connection between jet quenching and mass accretion rate in 4U 1820$-$30, possibly related to the properties of the inner accretion disk or boundary layer.
We report on the first observations of neutron star low-mass X-ray binaries with the Atacama Large Millimeter/submillimeter Array (ALMA) at $sim$300 GHz. Quasi-simultaneous observations of 4U 1728-34 and 4U 1820-30 were performed at radio (ATCA), inf rared (VLT) and X-ray (Swift) frequencies, spanning more than eight decades in frequency coverage. Both sources are detected at high significance with ALMA. The spectral energy distribution of 4U 1728-34 is consistent with synchrotron emission from a jet with a break from optically thick to optically thin emission at 1.3-11.0$times$10$^{13}$ Hz. This is the third time a jet spectral break has been reported for a neutron star X-ray binary. The radio to mm spectral energy distribution of 4U 1820-30 has significant detections at 5 and 300~GHz. This confirms the presence of radio emission during a soft state for this neutron star and represents the first detection of mm emission during such a state, unambiguously pointing to the presence of a jet. We also report on three additional unrelated sources - showing mm emission - in the ALMA fields of view of 4U 1728-34 and 4U 1820-30.
306 - Zhongxiang Wang 2009
The X-ray source 4U1820-30 in the globular cluster NGC 6624 is known as the most compact binary among the identified X-ray binaries. Having an orbital period of 685.0 s, the source consists of a neutron star primary and likely 0.06--0.08 Msun white d warf secondary. Here we report on far-ultraviolet (FUV) observations of this X-ray binary, made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. From our Fourier spectral analysis of the FUV timing data, we obtain a period of 693.5+/-1.3 s, which is significantly different from the orbital period. The light curve folded at this period can be described by a sinusoid, with a fractional semiamplitude of 6.3% and the phase zero (maximum of the sinusoid) at MJD 50886.015384+/-0.000043 (TDB). While the discovered FUV period may be consistent with a hierarchical triple system model that was previously considered for 4U 1820-30, we suggest that it could instead be the indication of superhump modulation, which arises from an eccentric accretion disk in the binary. The X-ray and FUV periods would be the orbital and superhump periods, respectively, indicating a 1% superhump excess and a white-dwarf/neutron-star mass ratio around 0.06. Considering 4U 1820-30 as a superhump source, we discuss the implications.
87 - P. F. Bloser 2000
We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1820-30 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996-7. 4U 1820-30 is an ``atoll source X-ray burster (XRB) located in the globular cluster NGC 6624. It is known to have an 11 minute binary period and a ~176 day modulation in its 2--12 keV flux. Observations were made with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study flux-related spectral changes. There are clear correlations between our fitted spectral parameters and both the broad-band (2--50 keV) flux and the position in the color-color diagram, as described by the parameter S_a introduced by Mendez et al. (1999). In addition, we find a strong correlation between the position in the color-color diagram and the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) reported by Zhang et al. (1998). This lends further support to the notion that evidence for the last stable orbit in the accretion disk of 4U 1820-30 has been observed. For a model consisting of Comptonization of cool photons by hot electrons plus an additional blackbody component, we report an abrupt change in the spectral parameters at the same accretion rate at which the kHz QPOs disappear. For a model consisting of a multicolor disk blackbody plus a cut-off power law, we find that the inner disk radius reaches a minimum at the same accretion rate at which the kHz QPO frequency saturates, as expected if the disk reaches the last stable orbit. Both models face theoretical and observational problems when interpreted physically for this system.
The ultracompact X-ray binary 4U 1820-30 is well known for its ~170-d superorbital modulation in X-ray flux and spectrum, and the exclusiveness of bursting behavior to the low hard island state. In May-June 2009, there was an exceptionally long 51-d low state. This state was well covered by X-ray observations and 12 bursts were detected, 9 with the high-throughput RXTE. We investigate the character of these X-ray bursts and find an interesting change in their photospheric expansion behavior. At the lowest inferred mass accretion rates, this expansion becomes very large in 4 bursts and reaches the so-called superexpansion regime. We speculate that this is due to the geometry of the inner accretion flow being spherical and a decreasing accretion rate: when the flow geometry nearest to the neutron star is spherical and the accretion rate is low, the ram pressure of the accretion disk may become too low to counteract that of the photospheric expansion. In effect, this may provide a novel means to probe the accretion flow. Additionally, we observe a peculiar effect: the well-known cessation of X-ray bursts in the high state is too quick to be consistent with a transition to stable helium burning. We suggest an alternative explanation, that the cessation is due to the introduction of a non-nuclear heat source in the neutron star ocean.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا