ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for X-ray Pulsations from Neutron Stars Using NICER

74   0   0.0 ( 0 )
 نشر من قبل Paul S. Ray
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for exploring the modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute event time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for emission and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, low-mass X-ray binaries (LMXBs), accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission, including the discovery of pulsations from the millisecond pulsar J1231-1411.



قيم البحث

اقرأ أيضاً

We report the discovery of soft X-ray pulsations from the nearby millisecond pulsar PSR J1231$-$1411 using NICER. The pulsed emission is characterized by a broad and asymmetric main pulse and a much fainter secondary interpulse, with a total pulsed c ount rate of 0.055 c s$^{-1}$ in the 0.35-1.5 keV band. We analyzed Fermi LAT data to update the pulse timing model covering 10 years of data and used that model to coherently combine NICER data over a year of observations. Spectral modeling suggests that the flux is dominated by thermal emission from a hot spot (or spots) on the neutron star surface. The phase relationship between the X-ray pulse and the radio and $gamma$ rays provides insight into the geometry of the system.
We report the detection of 376.05 Hz (2.66 ms) coherent X-ray pulsations in NICER observations of a transient outburst of the low-mass X-ray binary IGR J17494-3030 in 2020 October/November. The system is an accreting millisecond X-ray pulsar in a 75 minute ultracompact binary. The mass donor is most likely a $simeq 0.02 M_odot$ finite-entropy white dwarf composed of He or C/O. The fractional rms pulsed amplitude is 7.4%, and the soft (1-3 keV) X-ray pulse profile contains a significant second harmonic. The pulsed amplitude and pulse phase lag (relative to our mean timing model) are energy-dependent, each having a local maximum at 4 keV and 1.5 keV, respectively. We also recovered the X-ray pulsations in archival 2012 XMM-Newton observations, allowing us to measure a long-term pulsar spin-down rate of $dot u = -2.1(7)times10^{-14}$ Hz/s and to infer a pulsar surface dipole magnetic field strength of $simeq 10^9$ G. We show that the mass transfer in the binary is likely non-conservative, and we discuss various scenarios for mass loss from the system.
We report the detection of X-ray pulsations from the rotation-powered millisecond-period pulsars PSR J0740+6620 and PSR J1614-2230, two of the most massive neutron stars known, using observations with the Neutron Star Interior Composition Explorer (N ICER). We also analyze X-ray Multi-Mirror Mission (XMM-Newton) data for both pulsars to obtain their time-averaged fluxes and study their respective X-ray fields. PSR J0740+6620 exhibits a broad double-peaked profile with a separation of ~0.4 in phase. PSR J1614-2230, on the other hand, has a broad single-peak profile. The broad modulations with soft X-ray spectra of both pulsars are indicative of thermal radiation from one or more small regions of the stellar surface. We show the NICER detections of X-ray pulsations for both pulsars and also discuss the phase relationship to their radio pulsations. In the case of PSR J0740+6620, this paper documents the data reduction performed to obtain the pulsation detection and prepare for pulse profile modeling analysis.
The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.
338 - Hajime Inoue 2019
Structures of X-ray emitting magnetic polar regions on neutron stars in X-ray pulsars are studied in a range of the accretion rate, 10$^{17}$ g s$^{-1} sim 10^{18}$ g s$^{-1}$. It is shown that a thin but tall, radiation energy dominated, X-ray emitt ing polar cone appears at each of the polar regions. The height of the polar cone is several times as large as the neutron star radius. The energy gain due to the gravity of the neutron star in the polar cone exceeds the energy loss due to photon diffusion in the azimuthal direction of the cone, and a significant amount of energy is advected to the neutron star surface. Then, the radiation energy carried with the flow should become so large for the radiation pressure to overcome the magnetic pressure at the bottom of the cone. As a result, the matter should expand in the tangential direction along the neutron star surface, dragging the magnetic lines of force, and form a mound-like structure. The advected energy to the bottom of the cone should finally be radiated away from the surface of the polar mound and the matter should be settled on the neutron star surface there. From such configurations, we can expect an X-ray spectrum composed of a multi-color blackbody spectrum from the polar cone region and a quasi-single blackbody spectrum from the polar mound region. These spectral properties agree with observations. A combination of a fairly sharp pencil beam and a broad fan beam is expected from the polar cone region, while a broad pencil beam is expected from the polar mound region. With these X-ray beam properties, basic patterns of pulse profiles of X-ray pulsars can be explained too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا