ترغب بنشر مسار تعليمي؟ اضغط هنا

Brouwer degree, domination of manifolds, and groups presentable by products

278   0   0.0 ( 0 )
 نشر من قبل Pierre de la Harpe
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For oriented connected closed manifolds of the same dimension, there is a transitive relation: $M$ dominates $N$, or $M ge N$, if there exists a continuous map of non-zero degree from $M$ onto $N$. Section 1 is a reminder on the notion of degree (Brouwer, Hopf), Section 2 shows examples of domination and a first set of obstructions to domination due to Hopf, and Section 3 describes obstructions in terms of Gromovs simplicial volume. In Section 4 we address the particular question of when a given manifold can (or cannot) be dominated by a product. These considerations suggest a notion for groups (fundamental groups), due to D. Kotschick and C. Loh: a group is presentable by a product if it contains two infinite commuting subgroups which generate a subgroup of finite index. The last section shows a small sample of groups which are not presentable by products; examples include appropriate Coxeter groups.



قيم البحث

اقرأ أيضاً

115 - D. Kotschick , C. Loeh 2010
In this paper we study obstructions to presentability by products for finitely generated groups. Along the way we develop both the concept of acentral subgroups, and the relations between presentability by products on the one hand, and certain geomet ric and measure or orbit equivalence invariants of groups on the other. This leads to many new examples of groups not presentable by products, including all groups with infinitely many ends, the (outer) automorphism groups of free groups, Thompsons groups, and even some elementary amenable groups.
We give a different and possibly more accessible proof of a general Borsuk--Ulam theorem for a product of spheres, originally due to Ramos. That is, we show the non-existence of certain $(mathbb{Z}/2)^k$-equivariant maps from a product of $k$ spheres to the unit sphere in a real $(mathbb{Z}/2)^k$-representation of the same dimension. Our proof method allows us to derive Borsuk--Ulam theorems for certain equivariant maps from Stiefel manifolds, from the corresponding results about products of spheres, leading to alternative proofs and extensions of some results of Fadell and Husseini.
297 - Sho Hasui , Daisuke Kishimoto , 2014
The (non)triviality of Samelson products of the inclusions of the spheres into p-regular exceptional Lie groups is completely determined, where a connected Lie group is called p-regular if it has the p-local homotopy type of a product of spheres.
We study which quadratic forms are representable as the local degree of a map $f : A^n to A^n$ with an isolated zero at $0$, following the work of Kass and Wickelgren who established the connection to the quadratic form of Eisenbud, Khimshiashvili, a nd Levine. Our main observation is that over some base fields $k$, not all quadratic forms are representable as a local degree. Empirically the local degree of a map $f : A^n to A^n$ has many hyperbolic summands, and we prove that in fact this is the case for local degrees of low rank. We establish a complete classification of the quadratic forms of rank at most $7$ that are representable as the local degree of a map over all base fields of characteristic different from $2$. The number of hyperbolic summands was also studied by Eisenbud and Levine, where they establish general bounds on the number of hyperbolic forms that must appear in a quadratic form that is representable as a local degree. Our proof method is elementary and constructive in the case of rank 5 local degrees, while the work of Eisenbud and Levine is more general. We provide further families of examples that verify that the bounds of Eisenbud and Levine are tight in several cases.
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr oducts, ranging from explicit formulae and recurrences for specific families to more general results. As an application, we show the domination polynomial is computationally hard to evaluate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا