ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter and the Higgs in Natural SUSY

59   0   0.0 ( 0 )
 نشر من قبل Sebastian Macaluso
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Null results from dark matter (DM) direct detection experiments and the 125 GeV Higgs both pose serious challenges to minimal supersymmetry. In this paper, we propose a simple extension of the MSSM that economically solves both problems: a dark sector consisting of a singlet and a pair of $SU(2)$ doublets. Loops of the dark sector fields help lift the Higgs mass to 125 GeV consistent with naturalness, while the lightest fermion in the dark sector can be viable thermal relic DM, provided that it is mostly singlet. The DM relic abundance is controlled by s-wave annihilation to tops and Higgsinos, leading to a tight relation between the relic abundance and the spin-dependent direct detection cross section. As a result, the model will be fully probed by the next generation of direct detection experiments. Finally we discuss the discovery potential at LHC Run II.



قيم البحث

اقرأ أيضاً

Natural SUSY scenarios with a low value of the $mu$ parameter, are characterised by a higgsino-like dark matter candidate, and a compressed spectrum for the lightest higgsinos. We explore the prospects for probing this scenario at the 13 TeV stage of the LHC via monojet searches, with various integrated luminosity options, and demonstrate how these results are affect by different assumptions on the achievable level of control on the experimental systematic uncertainties. The complementarity between collider and direct detection experiments (present and future) is also highlighted.
110 - D. Tommasini 1994
In the Supersymmetric extension of the Standard Model with minimal particle content the three neutrinos can have non trivial masses and mixings, generated at 1 loop due to renormalizable lepton number violating interactions. We show that the resultin g mass matrix can provide simultaneously a significant amount of the Dark Matter of the Universe and solve the solar neutrino problem, if the free parameters of the model are fixed to values which are consistent with all the present accelerator and cosmological constraints. The theory also predicts new effects in future experiments looking for neutrino oscillations.
57 - P. Athron 2015
We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changi ng transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
We discuss the correlation between dark matter and Higgs decays in gauge theories where the dark matter is predicted from anomaly cancellation. In these theories, the Higgs responsible for the breaking of the gauge symmetry generates the mass for the dark matter candidate. We investigate the Higgs decays in the minimal gauge theory for Baryon number. After imposing the dark matter density and direct detection constraints, we find that the new Higgs can have a large branching ratio into two photons or into dark matter. Furthermore, we discuss the production channels and the unique signatures at the Large Hadron Collider.
Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY mu problem whi ch allows for a little hierarchy where mu ~ f_a^2/M_P ~ 100-300 GeV while the SUSY particle mass scale m(SUSY)~ 1-10 TeV >> mu. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m(axion) depends on the mixed axion-higgsino relic density. The range of m(axion) is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا