ترغب بنشر مسار تعليمي؟ اضغط هنا

Natural SUSY: LHC and Dark Matter direct detection experiments interplay

313   0   0.0 ( 0 )
 نشر من قبل Daniele Barducci
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural SUSY scenarios with a low value of the $mu$ parameter, are characterised by a higgsino-like dark matter candidate, and a compressed spectrum for the lightest higgsinos. We explore the prospects for probing this scenario at the 13 TeV stage of the LHC via monojet searches, with various integrated luminosity options, and demonstrate how these results are affect by different assumptions on the achievable level of control on the experimental systematic uncertainties. The complementarity between collider and direct detection experiments (present and future) is also highlighted.

قيم البحث

اقرأ أيضاً

We consider the possibility that dark matter can communicate with the Standard Model fields via flavor interactions. We take the dark matter to belong to a dark sector which contains at least two types, or flavors, of particles and then hypothesize t hat the Standard Model fields and dark matter share a common interaction which depends on flavor. As, generically, interaction eigenstates and mass eigenstates need not coincide, we consider both flavor-changing and flavor-conserving interactions. These interactions are then constrained by meson decays, kaon mixing, and current collider bounds, and we examine their relevance for direct detection and LHC.
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has imp roved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.
Null results from dark matter (DM) direct detection experiments and the 125 GeV Higgs both pose serious challenges to minimal supersymmetry. In this paper, we propose a simple extension of the MSSM that economically solves both problems: a dark secto r consisting of a singlet and a pair of $SU(2)$ doublets. Loops of the dark sector fields help lift the Higgs mass to 125 GeV consistent with naturalness, while the lightest fermion in the dark sector can be viable thermal relic DM, provided that it is mostly singlet. The DM relic abundance is controlled by s-wave annihilation to tops and Higgsinos, leading to a tight relation between the relic abundance and the spin-dependent direct detection cross section. As a result, the model will be fully probed by the next generation of direct detection experiments. Finally we discuss the discovery potential at LHC Run II.
We study the capabilities of the MAJORANA DEMONSTRATOR, a neutrinoless double-beta decay experiment currently under construction at the Sanford Underground Laboratory, as a light WIMP detector. For a cross section near the current experimental bound, the MAJORANA DEMONSTRATOR should collect hundreds or even thousands of recoil events. This opens up the possibility of simultaneously determining the physical properties of the dark matter and its local velocity distribution, directly from the data. We analyze this possibility and find that allowing the dark matter velocity distribution to float considerably worsens the WIMP mass determination. This result is traced to a previously unexplored degeneracy between the WIMP mass and the velocity dispersion. We simulate spectra using both isothermal and Via Lactea II velocity distributions and comment on the possible impact of streams. We conclude that knowledge of the dark matter velocity distribution will greatly facilitate the mass and cross section determination for a light WIMP.
We explore the phenomenology of Kaluza-Klein (KK) dark matter in very general models with universal extra dimensions (UEDs), emphasizing the complementarity between high-energy colliders and dark matter direct detection experiments. In models with re latively small mass splittings between the dark matter candidate and the rest of the (colored) spectrum, the collider sensitivity is diminished, but direct detection rates are enhanced. UEDs provide a natural framework for such mass degeneracies. We consider both 5-dimensional and 6-dimensional non-minimal UED models, and discuss the detection prospects for various KK dark matter candidates: the KK photon $gamma_1$, the KK $Z$-boson $Z_1$, the KK Higgs boson $H_1$ and the spinless KK photon $gamma_H$. We combine collider limits such as electroweak precision data and expected LHC reach, with cosmological constraints from WMAP, and the sensitivity of current or planned direct detection experiments. Allowing for general mass splittings, we show that neither colliders, nor direct detection experiments by themselves can explore all of the relevant KK dark matter parameter space. Nevertheless, they probe different parameter space regions, and the combination of the two types of constraints can be quite powerful. For example, in the case of $gamma_1$ in 5D UEDs the relevant parameter space will be almost completely covered by the combined LHC and direct detection sensitivities expected in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا