ترغب بنشر مسار تعليمي؟ اضغط هنا

$E_6$ Inspired SUSY Benchmarks, Dark Matter Relic Density and a 125 GeV Higgs

58   0   0.0 ( 0 )
 نشر من قبل Dylan Harries
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف P. Athron




اسأل ChatGPT حول البحث

We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.

قيم البحث

اقرأ أيضاً

88 - P. Athron 2016
We investigate dark matter in a constrained $E_6$ inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of $E_6$ leads to an additional $U(1)_N$ symmetry and a discrete matter parity. The custodial a nd matter symmetries imply there are two stable dark matter candidates, though one may be extremely light and contribute negligibly to the relic density. We demonstrate that a predominantly Higgsino, or mixed bino-Higgsino, neutralino can account for all of the relic abundance of dark matter, while fitting a 125 GeV SM-like Higgs and evading LHC limits on new states. However we show that the recent LUX 2016 limit on direct detection places severe constraints on the mixed bino-Higgsino scenarios that explain all of the dark matter. Nonetheless we still reveal interesting scenarios where the gluino, neutralino and chargino are light and discoverable at the LHC, but the full relic abundance is not accounted for. At the same time we also show that there is a huge volume of parameter space, with a predominantly Higgsino dark matter candidate that explains all the relic abundance, that will be discoverable with XENON1T. Finally we demonstrate that for the $E_6$ inspired model the exotic leptoquarks could still be light and within range of future LHC searches.
We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We sho w that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly, and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the Minimal Supersymmetric Standard Model, and its implications for experiments.
The breakdown of SU(6) global symmetry down to its SU(5) subgroup near the scale f > 10 TeV in the strongly interacting sector within the E_6 inspired composite Higgs model (E6CHM) gives rise to a set of pseudo-Nambu-Goldstone bosons (pNGBs) that inv olves one Standard Model (SM) singlet scalar, a SM-like Higgs doublet and an SU(3)_C triplet of scalar fields, $T$. We argue that the baryon number violation in the E6CHM can induce the observed matter-antimatter asymmetry if CP is violated. The coloured triplet of scalar fields with mass in the few TeV range plays a key role in this process and may lead to a distinct new physics signal that can be detected at the LHC in the near future.
Null results from dark matter (DM) direct detection experiments and the 125 GeV Higgs both pose serious challenges to minimal supersymmetry. In this paper, we propose a simple extension of the MSSM that economically solves both problems: a dark secto r consisting of a singlet and a pair of $SU(2)$ doublets. Loops of the dark sector fields help lift the Higgs mass to 125 GeV consistent with naturalness, while the lightest fermion in the dark sector can be viable thermal relic DM, provided that it is mostly singlet. The DM relic abundance is controlled by s-wave annihilation to tops and Higgsinos, leading to a tight relation between the relic abundance and the spin-dependent direct detection cross section. As a result, the model will be fully probed by the next generation of direct detection experiments. Finally we discuss the discovery potential at LHC Run II.
Motivated by the recent result of XENON1T collaboration with full exposure, 279 life days, that sets the most stringent limit on the spin-independent dark matter-nucleon scattering cross section we discuss a dark $E_6$-inspired model that features th e presence of a $U(1)_{d-u}$ gauge symmetry. The dark matter candidate is a Dirac fermion that interacts with Standard Model fermions via a massive Z that preserves the quantum number assignments of this symmetry. We compute the spin-independent scattering cross section off xenon nucleus and compare with the XENON1T limit; find the LHC bound on the Z mass as well as the projection sensitivity of high-energy and luminosity LHC; and derive the Fermi-LAT bounds on the dark matter annihilation cross section based on the observation of gamma-rays in the direction of Dwarf Spheroidal galaxies. We exploit the complementarity between these datasets to conclude that the new bound from XENON1T severely constrain the model, which combined with the LHC upgrade sensitivity rules out this WIMP realization setup below 5 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا