ﻻ يوجد ملخص باللغة العربية
The Search for Planets Orbiting Two Stars (SPOTS) survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ~13--40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.
As part of our on-going survey we have carried out high-contrast imaging with VLT/SPHERE/IRDIS to obtain polarized and total intensity images of the young ($11^{+16}_{-7}$Myr old) K3IV star Wray 15-788 within the Lower Centaurus Crux subgroup of Sco-
The study of dynamical processes in protoplanetary disks is essential to understand planet formation. In this context, transition disks are prime targets because they are at an advanced stage of disk clearing and may harbor direct signatures of disk
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta
Debris disks can be seen as the left-overs of giant planet formation and the possible nurseries of rocky planets. While M-type stars out-number more massive stars we know very little about the time evolution of their circumstellar disks at ages older
Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100,Myr, most of the gas is expected to have been rem