ﻻ يوجد ملخص باللغة العربية
We review progress on the use of electron spins to store and process quantum information, with particular focus on the ability of the electron spin to interact with multiple quantum degrees of freedom. We examine the benefits of hybrid quantum bits (qubits) in the solid state that are based on coupling electron spins to nuclear spin, electron charge, optical photons, and superconducting qubits. These benefits include the coherent storage of qubits for times exceeding seconds, fast qubit manipulation, single qubit measurement, and scalable methods for entangling spatially separated matter-based qubits. In this way, the key strengths of different physical qubit implementations are brought together, laying the foundation for practical solid-state quantum technologies.
Generating robust entanglement among solid-state spins is key for applications in quantum information processing and precision sensing. We show here a dissipative approach to generate such entanglement among the hyperfine coupled electron nuclear spi
Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measurement of a joint property such as qubit parity. These joint measurements do not require a direct interaction between
The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particles of nonzero charge, spin, and mass, have commonly been percei
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubit
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number