ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale nonlinear effects in Erbium-implanted Yttrium Orthosilicate

64   0   0.0 ( 0 )
 نشر من قبل Nadezhda Kukharchyk
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Doping of substrates at desired locations is a key technology for spin-based quantum memory devices. Focused ion beam implantation is well-suited for this task due to its high spacial resolution. In this work, we investigate ion-beam implanted erbium ensembles in Yttrium Orthosilicate crystals by means of confocal photoluminescence spectroscopy. The sample temperature and the post-implantation annealing step strongly reverberate in the properties of the implanted ions. We find that hot implantation leads to a higher activation rate of the ions. At high enough fluences, the relation between the fluence and final concentration of ions becomes non-linear. Two models are developed explaining the observed behaviour.



قيم البحث

اقرأ أيضاً

We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd$^{3+}$:Y$_2$SiO$_5$. The lifetime is measured as a function of magnetic field strength and orientation, temperature and Nd$^{3+} $ doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundreds of mT, and then finally decays rapidly for high field strengths. This behaviour can be modelled with a relaxation rate dominated by Nd$^{3+}$-Nd$^{3+}$ cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd$^{3+}$ ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3~K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.
114 - N.W. Phillips , H. Yu , S. Das 2020
Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation da mage, however an interesting question concerns the effect of ion energy on the resulting damage structures. The reduction in the thickness of the implanted layer as the implantation energy is reduced results in the significant quandary: Does one attempt to match the primary knock-on atom energy produced during neutron irradiation or implant at a much higher energy, such that a thicker damage layer is produced? Here we address this question by measuring the full strain tensor for two ion implantation energies, 2 MeV and 20 MeV in self-ion implanted tungsten, a critical material for the first wall and divertor of fusion reactors. A comparison of 2 MeV and 20 MeV implanted samples is shown to result in similar lattice swelling. Multi-reflection Bragg coherent diffractive imaging (MBCDI) shows that implantation induced strain is in fact heterogeneous at the nanoscale, suggesting that there is a non-uniform distribution of defects, an observation that is not fully captured by micro-beam Laue diffraction. At the surface, MBCDI and high-resolution electron back-scattered diffraction (HR-EBSD) strain measurements agree quite well in terms of this clustering/non-uniformity of the strain distribution. However, MBCDI reveals that the heterogeneity at greater depths in the sample is much larger than at the surface. This combination of techniques provides a powerful method for detailed investigation of the microstructural damage caused by ion bombardment, and more generally of strain related phenomena in microvolumes that are inaccessible via any other technique.
We investigate the electron and nuclear spin coherence properties of ytterbium ($mathrm{Yb}^{3+}$) ions with non-zero nuclear spin, within an yttrium orthosilicate (Y$_2$SiO$_5$) crystal, with a view to their potential application in quantum memories or repeaters. We find electron spin-lattice relaxation times are maximised at low magnetic field ($<100$ mT) where $g~sim6$, reaching 5 s at 2.5 K, while coherence times are maximised when addressing ESR transitions at higher fields where $gsim0.7$ where a Hahn echo measurement yields $T_2$ up to 73 $mu$s. Dynamical decoupling (XY16) can be used to suppress spectral diffusion and extend the coherence lifetime to over 0.5 ms, close to the limit of instantaneous diffusion. Using Davies electron-nuclear-double-resonance (ENDOR), we performed coherent control of the $^{173}mathrm{Yb}^{3+}$ nuclear spin and studied its relaxation dynamics. At around 4.5 K we measure a nuclear spin $T_1$ and $T_2$ of 4 and 0.35 ms, respectively, about 4 and 14 times longer than the corresponding times for the electron spin.
We report on hybrid circuit QED experiments with focused ion beam implanted Er$^{3+}$ ions in Y$_2$SiO$_5$ coupled to an array of superconducting lumped element microwave resonators. The Y$_2$SiO$_5$ crystal is divided into several areas with distinc t erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y$_2$SiO$_5$ sample. We demonstrate the successful integration of these engineered erbium spin ensembles with superconducting circuits.
Erbium doped low symmetry Y$_2$SiO$_5$ crystals attract a lot of attention in perspective of quantum information applications. However, only doping of the samples during growth is available up to now, which yields a quite homogeneous doping density. In the present work, we deposit Er$^{3+}$-ions by the focused ion beam technique at Yttrium sites with several fluences in one sample. With a photoluminescence study of these locally doped Er$^{3+}$:Y$_2$SiO$_5$ crystals, we are able to evaluate the efficiency of the implantation process and develop it for the highest efficiency possible. We observe the dependence of the ion activation after the post-implantation annealing on the fluence value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا