ترغب بنشر مسار تعليمي؟ اضغط هنا

On Bayesian based adaptive confidence sets for linear functionals

115   0   0.0 ( 0 )
 نشر من قبل Botond Szabo
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Botond Szabo




اسأل ChatGPT حول البحث

We consider the problem of constructing Bayesian based confidence sets for linear functionals in the inverse Gaussian white noise model. We work with a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the data-driven (slightly modified) marginal likelihood empirical Bayes method for the choice of this hyper-parameter. We show by theory and simulations that the credible sets constructed by this method have sub-optimal behaviour in general. However, by assuming self-similarity the credible sets have rate-adaptive size and optimal coverage. As an application of these results we construct $L_{infty}$-credible bands for the true functional parameter with adaptive size and optimal coverage under self-similarity constraint.



قيم البحث

اقرأ أيضاً

In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of ad aptive confidence regions is severely limited (cf. Li, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence sets for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral chi-squared distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
In the nonparametric Gaussian sequence space model an $ell^2$-confidence ball $C_n$ is constructed that adapts to unknown smoothness and Sobolev-norm of the infinite-dimensional parameter to be estimated. The confidence ball has exact and honest asym ptotic coverage over appropriately defined `self-similar parameter spaces. It is shown by information-theoretic methods that this `self-similarity condition is weakest possible.
138 - Eric Gautier 2018
This was a revision of arXiv:1105.2454v1 from 2012. It considers a variation on the STIV estimator where, instead of one conic constraint, there are as many conic constraints as moments (instruments) allowing to use more directly moderate deviations for self-normalized sums. The idea first appeared in formula (6.5) in arXiv:1105.2454v1 when some instruments can be endogenous. For reference and to avoid confusion with the STIV estimator, this estimator should be called C-STIV.
In this paper, we study the asymptotic posterior distribution of linear functionals of the density. In particular, we give general conditions to obtain a semiparametric version of the Bernstein-Von Mises theorem. We then apply this general result to nonparametric priors based on infinite dimensional exponential families. As a byproduct, we also derive adaptive nonparametric rates of concentration of the posterior distributions under these families of priors on the class of Sobolev and Besov spaces.
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_1,dots, X_n$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma.$ The complexity of the problem is characterized by its effective rank ${bf r}(Sigma):= frac{{rm tr}(Sigma)}{|Sigma|},$ where ${rm tr}(Sigma)$ denotes the trace of $Sigma$ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma.$ Under the assumption that ${bf r}(Sigma)=o(n),$ we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semi-parametric optimality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا