ﻻ يوجد ملخص باللغة العربية
We consider the problem of constructing Bayesian based confidence sets for linear functionals in the inverse Gaussian white noise model. We work with a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the data-driven (slightly modified) marginal likelihood empirical Bayes method for the choice of this hyper-parameter. We show by theory and simulations that the credible sets constructed by this method have sub-optimal behaviour in general. However, by assuming self-similarity the credible sets have rate-adaptive size and optimal coverage. As an application of these results we construct $L_{infty}$-credible bands for the true functional parameter with adaptive size and optimal coverage under self-similarity constraint.
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of ad
In the nonparametric Gaussian sequence space model an $ell^2$-confidence ball $C_n$ is constructed that adapts to unknown smoothness and Sobolev-norm of the infinite-dimensional parameter to be estimated. The confidence ball has exact and honest asym
This was a revision of arXiv:1105.2454v1 from 2012. It considers a variation on the STIV estimator where, instead of one conic constraint, there are as many conic constraints as moments (instruments) allowing to use more directly moderate deviations
In this paper, we study the asymptotic posterior distribution of linear functionals of the density. In particular, we give general conditions to obtain a semiparametric version of the Bernstein-Von Mises theorem. We then apply this general result to
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_1,dots, X_n$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma.$ The complexity of the problem is characterized by its effective