ﻻ يوجد ملخص باللغة العربية
In this paper, we study the asymptotic posterior distribution of linear functionals of the density. In particular, we give general conditions to obtain a semiparametric version of the Bernstein-Von Mises theorem. We then apply this general result to nonparametric priors based on infinite dimensional exponential families. As a byproduct, we also derive adaptive nonparametric rates of concentration of the posterior distributions under these families of priors on the class of Sobolev and Besov spaces.
The prominent Bernstein -- von Mises (BvM) result claims that the posterior distribution after centering by the efficient estimator and standardizing by the square root of the total Fisher information is nearly standard normal. In particular, the pri
We prove a Bernstein-von Mises theorem for a general class of high dimensional nonlinear Bayesian inverse problems in the vanishing noise limit. We propose a sufficient condition on the growth rate of the number of unknown parameters under which the
Few methods in Bayesian non-parametric statistics/ machine learning have received as much attention as Bayesian Additive Regression Trees (BART). While BART is now routinely performed for prediction tasks, its theoretical properties began to be under
Deheuvels [J. Multivariate Anal. 11 (1981) 102--113] and Genest and R{e}millard [Test 13 (2004) 335--369] have shown that powerful rank tests of multivariate independence can be based on combinations of asymptotically independent Cram{e}r--von Mises
We consider the problem of constructing Bayesian based confidence sets for linear functionals in the inverse Gaussian white noise model. We work with a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the data-driven (slight