ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of Jahn-Teller transition in the hexagonal Ba3CuSb2O9 single crystal

93   0   0.0 ( 0 )
 نشر من قبل Naoyuki Katayama Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive structural study on perovskite-type 6H-Ba3CuSb2O9, which exhibits a spin-orbital short-range ordering on a honeycomb-based lattice. By combining synchrotron x-ray diffraction, electron spin resonance, ultrasound measurement and Raman spectroscopy, we found that the static Jahn-Teller distortion is absent down to the lowest temperature in the present material, indicating orbital ordering is strongly suppressed. We discuss such an unusual state is realized with the help of spin degree of freedom, leading to a spin-orbital entangled liquid state.



قيم البحث

اقرأ أيضاً

We consider the superexchange in `frustrated Jahn-Teller systems, such as the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which transition metal ions with doubly degenerate orbitals form a triangular or pyrochlore lattice and are conn ected by the 90-degree metal-oxygen-metal bonds. We show that this interaction is much different from a more familiar exchange in systems with the 180-degree bonds, e.g. perovskites. In contrast to the strong interplay between the orbital and spin degrees of freedom in perovskites, in the 90-degree exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Due to frustration, the mean-field orbital ground state is strongly degenerate. Quantum orbital fluctuations select particular ferro-orbital states, such as the one observed in NaNiO_2. We also discuss why LiNiO_2 may still behave as an orbital liquid.
The quadratic Jahn-Teller effect of C$_{60}^{n-}$ ($n=$ 1-5) is investigated from the first principles. Employing the density functional theory calculations with hybrid functional, the quadratic vibronic coupling constants of C$_{60}^-$ were derived. The warping of the adiabatic potential energy surface of C$_{60}^-$ by the quadratic vibronic coupling is estimated about 2 meV, which is much smaller than the Jahn-Teller stabilization energy ($approx$ 50 meV). Because of the selection rule and the vibronic reduction, the quadratic coupling slightly modifies the vibronic states of C$_{60}$ anions. Particularly, in the case of C$_{60}^{3-}$, parity and symmetry selection rule significantly reduces the effect of quadratic coupling on vibronic states. The present results confirm that the low-energy vibronic dynamics of C$_{60}^{n-}$ is of pseudorotational type.
The surprising insulating and superconducting states of narrow-band graphene twisted bilayers have been mostly discussed so far in terms of strong electron correlation, with little or no attention to phonons and electron-phonon effects. We found that , among the 33492 phonons of a fully relaxed $theta=1.08^circ$ twisted bilayer, there are few special, hard and nearly dispersionless modes that resemble global vibrations of the moire supercell, as if it were a single, ultralarge molecule. One of them, doubly degenerate at $Gamma$ with symmetry $A_1+B_1$, couples very strongly with the valley degrees of freedom, also doubly degenerate, realizing a so-called $text{E}otimestext{e}$ Jahn-Teller (JT) coupling. The JT coupling lifts very efficiently all degeneracies which arise from the valley symmetry, and may lead, for an average atomic displacement as small as $0.5~$mA, to an insulating state at charge neutrality. This insulator possesses a non-trivial topology testified by the odd winding of the Wilson loop. In addition, freezing the same phonon at a zone boundary point brings about insulating states at most integer occupancies of the four ultra-flat electronic bands. Following that line, we further study the properties of the superconducting state that might be stabilized by these modes. Since the JT coupling modulates the hopping between AB and BA stacked regions, pairing occurs in the spin-singlet Cooper channel at the inter-(AB-BA) scale, which may condense a superconducting order parameter in the extended $s$-wave and/or $dpm id$-wave symmetry.
The first known magnetic mineral, magnetite (Fe$_3$O$_4$), has unusual properties which have fascinated mankind for centuries; it undergoes the Verwey transition at $T_{rm V}$ $sim$120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition however remains contentious. Here we use resonant inelastic X-ray scattering (RIXS) over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe$^{2+}$ and Fe$^{3+}$ states. Comparison of the RIXS results with crystal-field multiplet calculations shows that the spin-orbital $dd$ excitons of the Fe$^{2+}$ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe$^{2+}$O$_6$ octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and best explained as magnetic polarons.
We have used muon-spin rotation, heat capacity and x-ray diffraction measurements in combination with density functional theory and dipole field calculations to investigate the crystal and magnetic structure of FeTi$_2$O$_5$. We observe a long range ordered state below $T_{rm N}$=41.8(5) K with indications of significant correlations existing above this temperature. We determine candidate muon stopping sites in this compound, and find that our data are consistent with the spin Jahn-Teller driven antiferromagnetic ground state with $boldsymbol{k}$=(1/2,1/2,0) reported for CoTi$_2$O$_5$ ($T_{rm N}$=26 K). By comparing our data with calculated dipolar fields we can restrict the possible moment size and directions of the Fe$^{2+}$ ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا