ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital ordering in frustrated Jahn-Teller systems

114   0   0.0 ( 0 )
 نشر من قبل Maxim Mostovoy
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the superexchange in `frustrated Jahn-Teller systems, such as the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which transition metal ions with doubly degenerate orbitals form a triangular or pyrochlore lattice and are connected by the 90-degree metal-oxygen-metal bonds. We show that this interaction is much different from a more familiar exchange in systems with the 180-degree bonds, e.g. perovskites. In contrast to the strong interplay between the orbital and spin degrees of freedom in perovskites, in the 90-degree exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Due to frustration, the mean-field orbital ground state is strongly degenerate. Quantum orbital fluctuations select particular ferro-orbital states, such as the one observed in NaNiO_2. We also discuss why LiNiO_2 may still behave as an orbital liquid.



قيم البحث

اقرأ أيضاً

282 - S. Dong , S. Dai , X.Y. Yao 2005
The charge order of CE phase in half-doped manganites is studied, based on an argument that the charge-ordering is caused by the Jahn-Teller distortions of MnO6 octahedra rather than Coulomb repulsion between electrons. The uantitative calculation on the ferromagnetic zigzag chain as the basic structure unit of CE phase within the framework of two-orbital double exchange model including Jahn-Teller effect is performed, and it is shown that the charge-disproportionation of Mn cations in the charge-ordered CE phase is less than 13%. In addition, we predict the negative charge-disproportionation once the Jahn-Teller effect is weak enough.
238 - Eva Pavarini , Erik Koch 2009
The origin of the cooperative Jahn-Teller distortion and orbital-order in LaMnO3 is central to the physics of the manganites. The question is complicated by the simultaneous presence of tetragonal and GdFeO3-type distortions and the strong Hunds rule coupling between e_g and t_2g electrons. To clarify the situation we calculate the transition temperature for the Kugel-Khomskii superexchange mechanism by using the local density approximation+dynamical mean-field method, and disentangle the effects of super-exchange from those of lattice distortions. We find that super-exchange alone would yield T_KK=650 K. The tetragonal and GdFeO3-type distortions, however, reduce T_KK to 550 K. Thus electron-phonon coupling is essential to explain the persistence of local Jahn-Teller distortions to at least 1150 K and to reproduce the occupied orbital deduced from neutron scattering.
Single crystals of electron-doped SrMnO3 with a cubic perovskite structure have been systematically investigated as the most canonical (orbital-degenerate) double-exchange system, whose ground states have been still theoretically controversial. With only 1-2% electron doping by Ce substitution for Sr, a G-type antiferromagnetic metal with a tiny spin canting in a cubic lattice shows up as the ground state, where the Jahn-Teller polarons with heavy mass are likely to form. Further electron doping above 4%, however, replaces this isotropic metal with an insulator with tetragonal lattice distortion, accompanied by a quasi-one-dimensional 3z^2-r^2 orbital ordering with the C-type antiferromagnetism. The self-organization of such dilute polarons may reflect the critical role of the cooperative Jahn-Teller effect that is most effective in the originally cubic system.
The quadratic Jahn-Teller effect of C$_{60}^{n-}$ ($n=$ 1-5) is investigated from the first principles. Employing the density functional theory calculations with hybrid functional, the quadratic vibronic coupling constants of C$_{60}^-$ were derived. The warping of the adiabatic potential energy surface of C$_{60}^-$ by the quadratic vibronic coupling is estimated about 2 meV, which is much smaller than the Jahn-Teller stabilization energy ($approx$ 50 meV). Because of the selection rule and the vibronic reduction, the quadratic coupling slightly modifies the vibronic states of C$_{60}$ anions. Particularly, in the case of C$_{60}^{3-}$, parity and symmetry selection rule significantly reduces the effect of quadratic coupling on vibronic states. The present results confirm that the low-energy vibronic dynamics of C$_{60}^{n-}$ is of pseudorotational type.
174 - Hua Wu , C. F. Chang , O. Schumann 2011
The standard way to find the orbital occupation of Jahn-Teller (JT) ions is to use structural data, with the assumption of a one-to-one correspondence between the orbital occupation and the associated JT distortion, e.g. in O6 octahedron. We show, ho wever, that this approach in principle does not work for layered systems. Specifically, using the layered manganite La0.5Sr1.5MnO4 as an example, we found from our x-ray absorption measurements and theoretical calculations, that the type of orbital ordering strongly contradicts the standard local distortion approach for the Mn3+O6 octahedra, and that the generally ignored long-range crystal field effect and anisotropic hopping integrals are actually crucial to determine the orbital occupation. Our findings may open a pathway to control of the orbital state in multilayer systems and thus of their physical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا