ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillatory Shannon Entropy in the Process of Equilibration of Nonequilibrium Systems

101   0   0.0 ( 0 )
 نشر من قبل Amal Giri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the equilibration process of nonequilibrium systems by means of molecular dynamics simulation technique. The nonequilibrium conditions are achieved in systems by defining velocity components of the constituent atoms randomly. The calculated Shannon en- tropy from the probability distribution of the kinetic energy among the atoms at different instants during the process of equilibration shows oscillation as the system relaxes towards equilibrium. Fourier transformations of these oscillating Shannon entropies reveal the existance of Debye frequency of the concerned system. From these studies it was concluded that the signature of the equilibration process of dynamical systems is the time invariance of Shannon entropy.



قيم البحث

اقرأ أيضاً

237 - Haitao Yu , Jiulin Du 2014
The entropy production rate of nonequilibrium systems is studied via the Fokker-Planck equation. This approach, based on the entropy production rate equation given by Schnakenberg from a master equation, requires information of the transition rate of the system under study. We obtain the transition rate from the conditional probability extracted from the Fokker-Planck equation and then derive a new and more operable expression for the entropy production rate. Examples are presented as applications of our approach.
The Shannon entropy, one of the cornerstones of information theory, is widely used in physics, particularly in statistical mechanics. Yet its characterization and connection to physics remain vague, leaving ample room for misconceptions and misunders tanding. We will show that the Shannon entropy can be fully understood as measuring the variability of the elements within a given distribution: it characterizes how much variation can be found within a collection of objects. We will see that it is the only indicator that is continuous and linear, that it quantifies the number of yes/no questions (i.e. bits) that are needed to identify an element within the distribution, and we will see how applying this concept to statistical mechanics in different ways leads to the Boltzmann, Gibbs and von Neumann entropies.
71 - T. Bartsch , G. Wolschin 2018
The time evolution of a finite fermion system towards statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of th is fermionic diffusion equation are rederived in closed form, evaluated exactly for simplified initial conditions, and applied to hadron systems at low energies in the MeV-range, as well as to quark systems at relativistic energies in the TeV-range where antiparticle production is abundant. Conservation laws for particle number including created antiparticles, and for the energy are discussed.
An open question in the field of non-equilibrium statistical physics is whether there exists a unique way through which non-equilibrium systems equilibrate irrespective of how far they are away from equilibrium. To answer this question we have genera ted non-equilibrium states of various types of systems by molecular dynamics simulation technique. We have used a statistical method called system identification technique to understand the dynamical process of equilibration in reduced dimensional space. In this paper, we have tried to establish that the process of equilibration is unique.
We construct a system of nonequilibrium entropy limiters for the lattice Boltzmann methods (LBM). These limiters erase spurious oscillations without blurring of shocks, and do not affect smooth solutions. In general, they do the same work for LBM as flux limiters do for finite differences, finite volumes and finite elements methods, but for LBM the main idea behind the construction of nonequilibrium entropy limiter schemes is to transform a field of a scalar quantity - nonequilibrium entropy. There are two families of limiters: (i) based on restriction of nonequilibrium entropy (entropy trimming) and (ii) based on filtering of nonequilibrium entropy (entropy filtering). The physical properties of LBM provide some additional benefits: the control of entropy production and accurate estimate of introduced artificial dissipation are possible. The constructed limiters are tested on classical numerical examples: 1D athermal shock tubes with an initial density ratio 1:2 and the 2D lid-driven cavity for Reynolds numbers Re between 2000 and 7500 on a coarse 100*100 grid. All limiter constructions are applicable for both entropic and non-entropic quasiequilibria.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا