ﻻ يوجد ملخص باللغة العربية
The time evolution of a finite fermion system towards statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of this fermionic diffusion equation are rederived in closed form, evaluated exactly for simplified initial conditions, and applied to hadron systems at low energies in the MeV-range, as well as to quark systems at relativistic energies in the TeV-range where antiparticle production is abundant. Conservation laws for particle number including created antiparticles, and for the energy are discussed.
In this work, we present a result on the non-equilibrium dynamics causing equilibration and Gaussification of quadratic non-interacting fermionic Hamiltonians. Specifically, based on two basic assumptions - clustering of correlations in the initial s
An open question in the field of non-equilibrium statistical physics is whether there exists a unique way through which non-equilibrium systems equilibrate irrespective of how far they are away from equilibrium. To answer this question we have genera
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady stat
When noninteracting fermions are confined in a $D$-dimensional region of volume $mathrm{O}(L^D)$ and subjected to a continuous (or piecewise continuous) potential $V$ which decays sufficiently fast with distance, in the thermodynamic limit, the groun
We present a study of the equilibration process of nonequilibrium systems by means of molecular dynamics simulation technique. The nonequilibrium conditions are achieved in systems by defining velocity components of the constituent atoms randomly. Th