ترغب بنشر مسار تعليمي؟ اضغط هنا

Modality of Equilibration in Non-equilibrium Systems

207   0   0.0 ( 0 )
 نشر من قبل Amal Giri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An open question in the field of non-equilibrium statistical physics is whether there exists a unique way through which non-equilibrium systems equilibrate irrespective of how far they are away from equilibrium. To answer this question we have generated non-equilibrium states of various types of systems by molecular dynamics simulation technique. We have used a statistical method called system identification technique to understand the dynamical process of equilibration in reduced dimensional space. In this paper, we have tried to establish that the process of equilibration is unique.



قيم البحث

اقرأ أيضاً

71 - T. Bartsch , G. Wolschin 2018
The time evolution of a finite fermion system towards statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of th is fermionic diffusion equation are rederived in closed form, evaluated exactly for simplified initial conditions, and applied to hadron systems at low energies in the MeV-range, as well as to quark systems at relativistic energies in the TeV-range where antiparticle production is abundant. Conservation laws for particle number including created antiparticles, and for the energy are discussed.
80 - Pedro L. Garrido 2021
We study the behavior of stationary non-equilibrium two-body correlation functions for Diffusive Systems with equilibrium reference states (DSe). A DSe is described at the mesoscopic level by $M$ locally conserved continuum fields that evolve through coupled Langevin equations with white noises. The dynamic is designed such that the system may reach equilibrium states for a set of boundary conditions. In this form, just by changing the equilibrium boundary conditions, we make the system driven to a non-equilibrium stationary state. We decompose the correlations in a known local equilibrium part and another one that contains the non-equilibrium behavior and that we call {it correlations excess} $bar C(x,z)$. We formally derive the differential equations for $bar C$. We define a perturbative expansion around the equilibrium state to solve them order by order. We show that the $bar C$s first-order expansion, $bar C^{(1)}$, is always zero for the unique field case, $M=1$. Moreover $bar C^{(1)}$ is always long-range or zero when $M>1$. Surprisingly we show that their associated fluctuations, the space integrals of $bar C^{(1)}$, are always zero. Therefore, the fluctuations are dominated by the local equilibrium behavior up to second order in the perturbative expansion around the equilibrium. We derive the behaviors of $bar C^{(1)}$ in real space for dimensions $d=1$ and $2$ explicitly, and we apply the analysis to a generic $M=2$ case and, in particular, to a hydrodynamic model where we explicitly compute the two first perturbative orders, $bar C^{(1),(2)}$, and its associated fluctuations.
We study a quantity $mathcal{T}$ defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium $U_0$, $Delta U=U-U_0$ divided by the heat flow $J_{U}$ going out of the system. A recent study suggests that $math cal{T}$ is minimized in steady states (Phys.Rev.E.99, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine $mathcal{T}$ with and without constraints and find that $mathcal{T}$ is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows $U=U_0*f(J_U)$. In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.
During a spontaneous change, a macroscopic physical system will evolve towards a macro-state with more realizations. This observation is at the basis of the Statistical Mechanical version of the Second Law of Thermodynamics, and it provides an interp retation of entropy in terms of probabilities. However, we cannot rely on the statistical-mechanical expressions for entropy in systems that are far from equilibrium. In this paper, we compare various extensions of the definition of entropy, which have been proposed for non-equilibrium systems. It has recently been proposed that measures of information density may serve to quantify entropy in both equilibrium and nonequilibrium systems. We propose a new bit-wise method to measure the information density for off lattice systems. This method does not rely on coarse-graining of the particle coordinates. We then compare different estimates of the system entropy, based on information density and on the structural properties of the system, and check if the various entropies are mutually consistent and, importantly, whether they can detect non-trivial ordering phenomena. We find that, except for simple (one-dimensional) cases, the different methods yield answers that are at best qualitatively similar, and often not even that, although in several cases, different entropy estimates do detect ordering phenomena qualitatively. Our entropy estimates based on bit-wise data compression contain no adjustable scaling factor, and show large quantitative differences with the thermodynamic entropy obtained from equilibrium simulations. Hence, our results suggest that, at present, there is not yet a single, structure-based entropy definition that has general validity for equilibrium and non equilibrium systems.
These notes are based on lectures given during the Summer School `Active matter and non-equilibrium statistical physics, held in Les Houches in September 2018. In these notes, we have merged our lectures into a single chapter broadly dedicated to `No n-equilibrium active systems. We start with a discussion of generic features of non-equilibrium statistical mechanics, followed by a description of selected examples of the possible consequences of not being at thermal equilibrium. We then introduce the topic of dense glassy materials with a short review of glassy dynamics, rheology and jamming transitions for systems that are not active. We then discuss dense active materials, from simple mean-field theories to numerical models and experimental realizations. Finally, we discuss two examples of materials driven out of equilibrium by an oscillatory driving force.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا