ﻻ يوجد ملخص باللغة العربية
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this
We present an arbitrarily high-order, conditionally stable, partitioned spectral deferred correction (SDC) method for solving multiphysics problems using a sequence of pre-existing single-physics solvers. This method extends the work in [1, 2], which
Spectral deferred correction (SDC) methods are an attractive approach to iteratively computing collocation solutions to an ODE by performing so-called sweeps with a low-order time stepping method. SDC allows to easily construct high order split metho
We present a fourth-order finite-volume algorithm in space and time for low Mach number reacting flow with detailed kinetics and transport. Our temporal integration scheme is based on a multi-implicit spectral deferred correction (MISDC) strategy tha
We present a parallel implicit-explicit time integration scheme for the advection-diffusion-reaction systems arising from the equations governing low-Mach number combustion with complex chemistry. Our strategy employs parallelization across the metho