ﻻ يوجد ملخص باللغة العربية
We present a parallel implicit-explicit time integration scheme for the advection-diffusion-reaction systems arising from the equations governing low-Mach number combustion with complex chemistry. Our strategy employs parallelization across the method to accelerate the serial Multi-Implicit Spectral Deferred Correction (MISDC) scheme used to couple the advection, diffusion, and reaction processes. In our approach, referred to as Concurrent Implicit Spectral Deferred Correction (CISDC), the diffusion solves and the reaction solves are performed concurrently by different processors. Our analysis shows that the proposed parallel scheme is stable for stiff problems and that the sweeps converge to the fixed-point solution at a faster rate than with serial MISDC. We present numerical examples to demonstrate that the new algorithm is high-order accurate in time, and achieves a parallel speedup compared to serial MISDC.
We present a fourth-order finite-volume algorithm in space and time for low Mach number reacting flow with detailed kinetics and transport. Our temporal integration scheme is based on a multi-implicit spectral deferred correction (MISDC) strategy tha
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC
We present an arbitrarily high-order, conditionally stable, partitioned spectral deferred correction (SDC) method for solving multiphysics problems using a sequence of pre-existing single-physics solvers. This method extends the work in [1, 2], which
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this
Spectral deferred correction (SDC) methods are an attractive approach to iteratively computing collocation solutions to an ODE by performing so-called sweeps with a low-order time stepping method. SDC allows to easily construct high order split metho