ﻻ يوجد ملخص باللغة العربية
We present an arbitrarily high-order, conditionally stable, partitioned spectral deferred correction (SDC) method for solving multiphysics problems using a sequence of pre-existing single-physics solvers. This method extends the work in [1, 2], which used implicit-explicit Runge-Kutta methods (IMEX) to build high-order, partitioned multiphysics solvers. We consider a generic multiphysics problem modeled as a system of coupled ordinary differential equations (ODEs), coupled through coupling terms that can depend on the state of each subsystem; therefore the method applies to both a semi-discretized system of partial differential equations (PDEs) or problems naturally modeled as coupled systems of ODEs. The sufficient conditions to build arbitrarily high-order partitioned SDC schemes are derived. Based on these conditions, various of partitioned SDC schemes are designed. The stability of the first-order partitioned SDC scheme is analyzed in detail on a coupled, linear model problem. We show that the scheme is conditionally stable, and under conditions on the coupling strength, the scheme can be unconditionally stable. We demonstrate the performance of the proposed partitioned solvers on several classes of multiphysics problems including a simple linear system of ODEs, advection-diffusion-reaction systems, and fluid-structure interaction problems with both incompressible and compressible flows, where we verify the design order of the SDC schemes and study various stability properties. We also directly compare the accuracy, stability, and cost of the proposed partitioned SDC solver with the partitioned IMEX method in [1, 2] on this suite of test problems. The results suggest that the high-order partitioned SDC solvers are more robust than the partitioned IMEX solvers for the numerical examples considered in this work, while the IMEX methods require fewer implicit solves.
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this
We present a fourth-order finite-volume algorithm in space and time for low Mach number reacting flow with detailed kinetics and transport. Our temporal integration scheme is based on a multi-implicit spectral deferred correction (MISDC) strategy tha
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC
We present a parallel implicit-explicit time integration scheme for the advection-diffusion-reaction systems arising from the equations governing low-Mach number combustion with complex chemistry. Our strategy employs parallelization across the metho
Spectral deferred correction (SDC) methods are an attractive approach to iteratively computing collocation solutions to an ODE by performing so-called sweeps with a low-order time stepping method. SDC allows to easily construct high order split metho