ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking of PT-symmetry in bounded and unbounded scattering systems

117   0   0.0 ( 0 )
 نشر من قبل Stefan Rotter
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PT-symmetric scattering systems with balanced gain and loss can undergo a symmetry-breaking transition in which the eigenvalues of the non-unitary scattering matrix change their phase shifts from real to complex values. We relate the PT-symmetry breaking points of such an unbounded scattering system to those of underlying bounded systems. In particular, we show how the PT-thresholds in the scattering matrix of the unbounded system translate into analogous transitions in the Robin boundary conditions of the corresponding bounded systems. Based on this relation, we argue and then confirm that the PT-transitions in the scattering matrix are, under very general conditions, entirely insensitive to a variable coupling strength between the bounded region and the unbounded asymptotic region, a result that can be tested experimentally and visualized using the concept of Smith charts.



قيم البحث

اقرأ أيضاً

Non-Hermitian systems, with symmetric or antisymmetric Hamiltonians under the parity-time ($mathcal{PT}$) operations, can have entirely real eigenvalues. This fact has led to surprising discoveries such as loss-induced lasing and topological energy t ransfer. A merit of anti-$mathcal{PT}$ systems is free of gain, but in recent efforts on making anti-$mathcal{PT}$ devices, nonlinearity is still required. Here, counterintuitively, we show how to achieve anti-$mathcal{PT}$ symmetry and its spontaneous breaking in a linear device by spinning a lossy resonator. Compared with a Hermitian spinning device, significantly enhanced optical isolation and ultrasensitive nanoparticle sensing are achievable in the anti-$mathcal{PT}$-broken phase. In a broader view, our work provides a new tool to study anti-$mathcal{PT}$ physics, with such a wide range of applications as anti-$mathcal{PT}$ lasers, anti-$mathcal{PT}$ gyroscopes, and anti-$mathcal{PT}$ topological photonics or optomechanics.
We extend the generalize conservation law of light propagating in a one-dimensional $cal PT$-symmetric system, i.e., $|T-1|=sqrt{R_LR_R}$ for the transmittance $T$ and the reflectance $R_{L,R}$ from the left and right, to a multimode waveguide with e ither $cal PT$ or $cal RT$ symmetry, in which higher dimensional investigations are necessary. These conservation laws exist not only in a matrix form for the transmission and reflection matrices; they also exist in a scalar form for real-valued quantities by defining generalized transmittance and reflectance. We then discuss, for the first time, how a multimode $cal PT$-symmetric waveguide can be used to observe spontaneous symmetry breaking of the scattering matrix, which typically requires tuning the non-hermiticity of the system (i.e. the strength of gain and loss). Here the advantage of using a multimode waveguide is the elimination of tuning any system parameters: the transverse mode order $m$ plays the role of the symmetry breaking parameter, and one observes the symmetry breaking by simply performing scattering experiment in each waveguide channel at a single frequency and fixed strength of gain and loss.
We propose how to achieve synthetic $mathcal{PT}$ symmetry in optomechanics without using any active medium. We find that harnessing the Stokes process in such a system can lead to the emergence of exceptional point (EP), i.e., the coalescing of both the eigenvalues and the eigenvectors of the system. By encircling the EP,non-reciprocal optical amplification and chiral mode switching can be achieved. This provides a surprisingly simplified route to realize $mathcal{PT}$-symmetric optomechanics, indicating that a wide range of EP devices can be created and utilized for various applications such as topological optical engineering and nanomechanical processing or sensing.
Over the past decade, parity-time ($mathcal{PT}$)-symmetric Hamiltonians have been experimentally realized in classical, optical settings with balanced gain and loss, or in quantum systems with localized loss. In both realizations, the $mathcal{PT}$- symmetry breaking transition occurs at the exceptional point of the non-Hermitian Hamiltonian, where its eigenvalues and the corresponding eigenvectors both coincide. Here, we show that in lossy systems, the $mathcal{PT}$ transition is a phenomenon that broadly occurs without an attendant exceptional point, and is driven by the potential asymmetry between the neutral and the lossy regions. With experimentally realizable quantum models in mind, we investigate dimer and trimer waveguide configurations with one lossy waveguide. We validate the tight-binding model results by using the beam propagation method analysis. Our results pave a robust way toward studying the interplay between passive $mathcal{PT}$ transitions and quantum effects in dissipative photonic configurations.
We uncover that the breaking point of the PT-symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off-diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at whic h PT-symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and statistically averaged width of the output pattern substantially increases. Beyond the symmetry-breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both, broken and unbroken PT-symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا