ﻻ يوجد ملخص باللغة العربية
We extend the generalize conservation law of light propagating in a one-dimensional $cal PT$-symmetric system, i.e., $|T-1|=sqrt{R_LR_R}$ for the transmittance $T$ and the reflectance $R_{L,R}$ from the left and right, to a multimode waveguide with either $cal PT$ or $cal RT$ symmetry, in which higher dimensional investigations are necessary. These conservation laws exist not only in a matrix form for the transmission and reflection matrices; they also exist in a scalar form for real-valued quantities by defining generalized transmittance and reflectance. We then discuss, for the first time, how a multimode $cal PT$-symmetric waveguide can be used to observe spontaneous symmetry breaking of the scattering matrix, which typically requires tuning the non-hermiticity of the system (i.e. the strength of gain and loss). Here the advantage of using a multimode waveguide is the elimination of tuning any system parameters: the transverse mode order $m$ plays the role of the symmetry breaking parameter, and one observes the symmetry breaking by simply performing scattering experiment in each waveguide channel at a single frequency and fixed strength of gain and loss.
We introduce the notion of a ${cal PT}$-symmetric dimer with a $chi^{(2)}$ nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss,
In this work we first examine transverse and longitudinal fluxes in a $cal PT$-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the $cal PT$ t
PT-symmetric scattering systems with balanced gain and loss can undergo a symmetry-breaking transition in which the eigenvalues of the non-unitary scattering matrix change their phase shifts from real to complex values. We relate the PT-symmetry brea
We demonstrate the existence of exceptional points of degeneracy (EPD) of periodic eigenstates in non-Hermitian coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in their dispersion diagram at which t
Starting from positive and negative helicity Maxwell equations expressed in Riemann-Silberstein vectors, we derive the ten usual and ten additional Poincar{e} invariants, the latter being related to the electromagnetic spin, i.e., the intrinsic rotat