ﻻ يوجد ملخص باللغة العربية
We propose how to achieve synthetic $mathcal{PT}$ symmetry in optomechanics without using any active medium. We find that harnessing the Stokes process in such a system can lead to the emergence of exceptional point (EP), i.e., the coalescing of both the eigenvalues and the eigenvectors of the system. By encircling the EP,non-reciprocal optical amplification and chiral mode switching can be achieved. This provides a surprisingly simplified route to realize $mathcal{PT}$-symmetric optomechanics, indicating that a wide range of EP devices can be created and utilized for various applications such as topological optical engineering and nanomechanical processing or sensing.
Non-Hermitian systems, with symmetric or antisymmetric Hamiltonians under the parity-time ($mathcal{PT}$) operations, can have entirely real eigenvalues. This fact has led to surprising discoveries such as loss-induced lasing and topological energy t
PT-symmetric scattering systems with balanced gain and loss can undergo a symmetry-breaking transition in which the eigenvalues of the non-unitary scattering matrix change their phase shifts from real to complex values. We relate the PT-symmetry brea
Directional transport is obtained in various multimode systems by driving multiple, nonreciprocally-interfering interactions between individual bosonic modes. However, systems sustaining the required number of modes become physically complex. In our
We present a generic system of three harmonic modes coupled parametrically with a time-varying coupling modulated by a combination of two pump harmonics, and show how this system provides the minimal platform to realize nonreciprocal couplings that c
Over the past decade, parity-time ($mathcal{PT}$)-symmetric Hamiltonians have been experimentally realized in classical, optical settings with balanced gain and loss, or in quantum systems with localized loss. In both realizations, the $mathcal{PT}$-