ترغب بنشر مسار تعليمي؟ اضغط هنا

Focusing, Power Tunneling and Rejection from Chiral and/or Chiral Nihility/Nihility Metamaterials Layers

31   0   0.0 ( 0 )
 نشر من قبل Qaisar Naqvi Abbas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslovs method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{deg}ector, not only unifies several published works conducted by different researchers but also provides better understanding of new cases.

قيم البحث

اقرأ أيضاً

Behavior of planar multilayer periodic structures due to plane wave excitation has been studied using the transfer matrix method. Multilayer structure is taken with periodicity two. That is, layers at even and odd locations repeat themselves. Layers at odd locations are of chiral nihility metamaterial whereas three different cases for layers at even locations are considered, i.e., dielectric, chiral and chiral nihility. Effects of polarization rotation due to the optical activity is studied with respect to the angle of incidence and frequency in terahertz domain. Chiral nihility introduces property of transparency to the structure for normal incidence while complete rejection is observed for chiral nihility-chiral nihility structure at oblique incidence.
We study birational transformations of the projective space originating from lattice statistical mechanics, specifically from various chiral Potts models. Associating these models to emph{stable patterns} and emph{signed-patterns}, we give general re sults which allow us to find emph{all} chiral $q$-state spin-edge Potts models when the number of states $q$ is a prime or the square of a prime, as well as several $q$-dependent family of models. We also prove the absence of monocolor stable signed-pattern with more than four states. This demonstrates a conjecture about cyclic Hadamard matrices in a particular case. The birational transformations associated to these lattice spin-edge models show complexity reduction. In particular we recover a one-parameter family of integrable transformations, for which we give a matrix representation
59 - Jacques H. H. Perk 2015
In the first part of this paper I shall discuss the round-about way of how the integrable chiral Potts model was discovered about 30 years ago. As there should be more higher-genus models to be discovered, this might be of interest. In the second par t I shall discuss some quantum group aspects, especially issues of odd versus even $N$ related to the Serre relations conjecture in our quantum loop subalgebra paper of 5 years ago and how we can make good use of coproducts, also borrowing ideas of Drinfeld, Jimbo, Deguchi, Fabricius, McCoy and Nishino.
We present a non-chiral version of the Intermediate Long Wave (ILW) equation that can model nonlinear waves propagating on two opposite edges of a quantum Hall system, taking into account inter-edge interactions. We obtain exact soliton solutions gov erned by the hyperbolic Calogero-Moser-Sutherland (CMS) model, and we give a Lax pair, a Hirota form, and conservation laws for this new equation. We also present a periodic non-chiral ILW equation, together with its soliton solutions governed by the elliptic CMS model.
At roots of unity the $N$-state integrable chiral Potts model and the six-vertex model descend from each other with the $tau_2$ model as the intermediate. We shall discuss how different gauge choices in the six-vertex model lead to two different quan tum group constructions with different $q$-Pochhammer symbols, one construction only working well for $N$ odd, the other equally well for all $N$. We also address the generalization based on the sl$(m,n)$ vertex model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا