ﻻ يوجد ملخص باللغة العربية
At roots of unity the $N$-state integrable chiral Potts model and the six-vertex model descend from each other with the $tau_2$ model as the intermediate. We shall discuss how different gauge choices in the six-vertex model lead to two different quantum group constructions with different $q$-Pochhammer symbols, one construction only working well for $N$ odd, the other equally well for all $N$. We also address the generalization based on the sl$(m,n)$ vertex model.
In this paper we discuss the integrable chiral Potts model, as it clearly relates to how we got befriended with Vaughan Jones, whose birthday we celebrated at the Qinhuangdao meeting. Remarkably we can also celebrate the birthday of the model, as it
In the first part of this paper I shall discuss the round-about way of how the integrable chiral Potts model was discovered about 30 years ago. As there should be more higher-genus models to be discovered, this might be of interest. In the second par
We construct log-modular quantum groups at even order roots of unity, both as finite-dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor categories, via a de-equivariantization procedure. The existence of such quantum groups had been p
We study birational transformations of the projective space originating from lattice statistical mechanics, specifically from various chiral Potts models. Associating these models to emph{stable patterns} and emph{signed-patterns}, we give general re
We construct lattice parafermions for the $Z(N)$ chiral Potts model in terms of quasi-local currents of the underlying quantum group. We show that the conservation of the quantum group currents leads to twisted discrete-holomorphicity (DH) conditions