ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-chiral Intermediate Long Wave equation and inter-edge effects in narrow quantum Hall systems

143   0   0.0 ( 0 )
 نشر من قبل Edwin Langmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a non-chiral version of the Intermediate Long Wave (ILW) equation that can model nonlinear waves propagating on two opposite edges of a quantum Hall system, taking into account inter-edge interactions. We obtain exact soliton solutions governed by the hyperbolic Calogero-Moser-Sutherland (CMS) model, and we give a Lax pair, a Hirota form, and conservation laws for this new equation. We also present a periodic non-chiral ILW equation, together with its soliton solutions governed by the elliptic CMS model.

قيم البحث

اقرأ أيضاً

Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T he electron motion is confined to unbounded subsets of the plane by confining potential barriers. The edges of the confining potential barrier create edge currents. In this, the first of two papers, we prove explicit lower bounds on the edge currents associated with one-edge, unbounded geometries formed by various confining potentials. This work extends some known results that we review. The edge currents are carried by states with energy localized between any two Landau levels. These one-edge geometries describe the electron confined to certain unbounded regions in the plane obtained by deforming half-plane regions. We prove that the currents are stable under various potential perturbations, provided the perturbations are suitably small relative to the magnetic field strength, including perturbations by random potentials. For these cases of one-edge geometries, the existence of, and the estimates on, the edge currents imply that the corresponding Hamiltonian has intervals of absolutely continuous spectrum. In the second paper of this series, we consider the edge currents associated with two-edge geometries describing bounded, cylinder-like regions, and unbounded, strip-like, regions.
Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T he electron motion is confined to bounded or unbounded subsets of the plane by confining potential barriers. The edges of the confining potential barriers create edge currents. This is the second of two papers in which we review recent progress and prove explicit lower bounds on the edge currents associated with one- and two-edge geometries. In this paper, we study various unbounded and bounded, two-edge geometries with soft and hard confining potentials. These two-edge geometries describe the electron confined to unbounded regions in the plane, such as a strip, or to bounded regions, such as a finite length cylinder. We prove that the edge currents are stable under various perturbations, provided they are suitably small relative to the magnetic field strength, including perturbations by random potentials. The existence of, and the estimates on, the edge currents are independent of the spectral type of the operator.
The time evolution problem for non-self adjoint second order differential operators is studied by means of the path integral formulation. Explicit computation of the path integral via the use of certain underlying stochastic differential equations, w hich naturally emerge when computing the path integral, leads to a universal expression for the associated measure regardless of the form of the differential operators. The discrete non-linear hierarchy (DNLS) is then considered and the corresponding hierarchy of solvable, in principle, SDEs is extracted. The first couple members of the hierarchy correspond to the discrete stochastic transport and heat equations. The discrete stochastic Burgers equation is also obtained through the analogue of the Cole-Hopf transformation. The continuum limit is also discussed.
We show that wave breaking occurs with positive probability for the Stochastic Camassa-Holm (SCH) equation. This means that temporal stochasticity in the diffeomorphic flow map for SCH does not prevent the wave breaking process which leads to the for mation of peakon solutions. We conjecture that the time-asymptotic solutions of SCH will consist of emergent wave trains of peakons moving along stochastic space-time paths.
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr y. The high number of symmetries (both geometrical and dynamical) exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics). We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا