ﻻ يوجد ملخص باللغة العربية
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter $Lambda$ to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier--Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent $theta=2.9pm0.2$.
We present results from an ensemble of 50 runs of two-dimensional hydrodynamic turbulence with spatial resolution of 2048^2 grid points, and from an ensemble of 10 runs with 4096^2 grid points. All runs in each ensemble have random initial conditions
The strength of the nonlinearity is measured in decaying two-dimensional turbulence, by comparing its value to that found in a Gaussian field. It is shown how the nonlinearity drops following a two-step process. First a fast relaxation is observed on
We report the onset of elastic turbulence in a two-dimensional Taylor-Couette geometry using numerical solutions of the Oldroyd-B model, also performed at high Weissenberg numbers with the program OpenFOAM. Beyond a critical Weissenberg number, an el
In this paper we numerically investigate the influence of dissipation during particle collisions in an homogeneous turbulent velocity field by coupling a discrete element method to a Lattice-Boltzmann simulation with spectral forcing. We show that ev
The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a truncated HVBK model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equation