ﻻ يوجد ملخص باللغة العربية
We show how to construct an algebraic curve for factorized string solution in the context of the AdS/CFT correspondence. We define factorized solutions to be solutions where the flat-connection becomes independent of one of the worldsheet variables by a similarity transformation with a matrix $S$ satisfying $S^{-1}d S=const$. Using the factorization property we construct a well defined Lax operator and an associated algebraic curve. The construction procedure is local and does not require the introduction of a monodromy matrix. The procedure can be applied for string solutions with any boundary conditions. We study the properties of the curve and give several examples for the application of the procedure.
We apply the duality transformation relating the heterotic to the IIA string in 6D to the class of exact string solutions described by the chiral null model and derive explicit formulas for all fields after reduction to 4D. If the model is restricted
In this work, the following conjectures are proven in the case of a Riemann surface with abelian group of symmetry: a) The $b-c$ systems on a Riemann surface $M$ are equivalent to a multivalued field theory on the complex plane if $M$ is represented
We have discussed a particular class of exact cosmological solutions of the 4-dimensional low energy string gravity in the string frame. In the vacuum without matter and the 2-form fields, the exact cosmological solutions always give monotonically sh
We obtain classical string solutions on RxS^2 by applying the dressing method on string solutions with elliptic Pohlmeyer counterparts. This is realized through the use of the simplest possible dressing factor, which possesses just a pair of poles ly
A family of exact conformal field theories is constructed which describe charged black strings in three dimensions. Unlike previous charged black hole or extended black hole solutions in string theory, the low energy spacetime metric has a regular in