ﻻ يوجد ملخص باللغة العربية
In this work, the following conjectures are proven in the case of a Riemann surface with abelian group of symmetry: a) The $b-c$ systems on a Riemann surface $M$ are equivalent to a multivalued field theory on the complex plane if $M$ is represented as an algebraic curve; b) the amplitudes of the $b-c$ systems on a Riemann surface $M$ with discrete group of symmetry can be derived from the operator product expansions on the complex plane of an holonomic quantum field theory a la Sato, Jimbo and Miwa. To this purpose, the solutions of the Riemann-Hilbert problem on an algebraic curve with abelian monodromy group obtained by Zamolodchikov, Knizhnik and Bershadskii-Radul are used in order to expand the $b-c$ fields in a Fourier-like basis. The amplitudes of the $b-c$ systems on the Riemann surface are then recovered exploiting simple normal ordering rules on the complex plane.
We show how to construct an algebraic curve for factorized string solution in the context of the AdS/CFT correspondence. We define factorized solutions to be solutions where the flat-connection becomes independent of one of the worldsheet variables b
It is proven that the nilpotent $Delta$-operator in the field-antifield formalism can be constructed in terms of an antisymplectic structure only.
Self-consistent Greens function theory has recently been extended to the basic formalism needed to account for three-body interactions [A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls, (Phys. Rev. C 88, 054326 (2013))]. The contribution
We propose new backgrounds of extra dimensions to lead to four-dimensional chiral models with three generations of matter fermions, that is $T^2/Z_N$ twisted orbifolds with magnetic fluxes. We consider gauge theory on six-dimensional space-time, whic
We study the relation between the dilaton action and sigma models for the Goldstone bosons of the spontaneous breaking of the conformal group. We argue that the relation requires that the sigma model is diffeomorphism invariant. The origin of the WZW