ﻻ يوجد ملخص باللغة العربية
We exactly rewrite the Z(2) lattice gauge theory with standard plaquette action as a random surface model equivalent to the untruncated set of its strong coupling graphs. By extending the worm approach applied to spin models we simulate such surfaces including Polyakov line defects that randomly walk over the lattice. Our Monte Carlo algorithms for the graph ensemble are reasonably efficient but not free of critical slowing down. Polyakov line correlators can be measured in this approach with small relative errors that are independent of the separation. As a first application our results are confronted with effective string theory predictions. In addition, the excess free energy due to twisted boundary conditions becomes an easily accessible observable. Our numerical experiments are in three dimensions, but the method is expected to work in any dimension.
Euclidean strong coupling expansion of the partition function is applied to lattice Yang-Mills theory at finite temperature, i.e. for lattices with a compactified temporal direction. The expansions have a finite radius of convergence and thus are val
According to recent studies on resurgence scenario of quantum systems, some topological objects with fractional charges play an important role to see the resurgence structure. In this talk, we report a numerical evidence of the fractional-instantons
We consider tubular neighborhood of an arbitrary submanifold embedded in a (pseudo-)Riemannian manifold. This can be described by Fermi normal coordinates (FNC) satisfying certain conditions as described by Florides and Synge in cite{FS}. By generali
We explore aspects of the phase structure of SU(2) and SU(3) lattice gauge theories at strong coupling with many flavours $N_f$ of Wilson fermions in the fundamental representation. The pseudoscalar meson mass as a function of hopping parameter is ob
Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic