ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating quantum field theory with a quantum computer

128   0   0.0 ( 0 )
 نشر من قبل John Preskill
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف John Preskill




اسأل ChatGPT حول البحث

Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though Im not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, its worthwhile to get started now. Todays research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics.



قيم البحث

اقرأ أيضاً

We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results.
273 - Jose Luis Rosales 2015
Modern cryptography is largely based on complexity assumptions, for example, the ubiquitous RSA is based on the supposed complexity of the prime factorization problem. Thus, it is of fundamental importance to understand how a quantum computer would e ventually weaken these algorithms. In this paper, one follows Feynmans prescription for a computer to simulate the physics corresponding to the algorithm of factoring a large number $N$ into primes. Using Dirac-Jordan transformation theory one translates factorization into the language of quantum hermitical operators, acting on the vectors of the Hilbert space. This leads to obtaining the ensemble of factorization of $N$ in terms of the Euler function $varphi(N)$, that is quantized. On the other hand, considering $N$ as a parameter of the computer, a Quantum Mechanical Prime Counting Function $pi_{QM}(x)$, where $x$ factorizes $N$, is derived. This function converges to $pi(x)$ when $Ngg x$. It has no counterpart in analytic number theory and its derivation relies on semiclassical quantization alone.
Atomic nuclei are important laboratories for exploring and testing new insights into the universe, such as experiments to directly detect dark matter or explore properties of neutrinos. The targets of interest are often heavy, complex nuclei that cha llenge our ability to reliably model them (as well as quantify the uncertainty of those models) with classical computers. Hence there is great interest in applying quantum computation to nuclear structure for these applications. As an early step in this direction, especially with regards to the uncertainties in the relevant quantum calculations, we develop circuits to implement variational quantum eigensolver (VQE) algorithms for the Lipkin-Meshkov-Glick model, which is often used in the nuclear physics community as a testbed for many-body methods. We present quantum circuits for VQE for 2 and 3 particles and discuss the construction of circuits for more particles. Implementing the VQE for a 2-particle system on the IBM Quantum Experience, we identify initialization and two-qubit gates as the largest sources of error. We find that error mitigation procedures reduce the errors in the results significantly, but additional quantum hardware improvements are needed for quantum calculations to be sufficiently accurate to be competitive with the best current classical methods.
We present a first attempt to design a quantum circuit for the determination of the parton content of the proton through the estimation of parton distribution functions (PDFs), in the context of high energy physics (HEP). The growing interest in quan tum computing and the recent developments of new algorithms and quantum hardware devices motivates the study of methodologies applied to HEP. In this work we identify architectures of variational quantum circuits suitable for PDFs representation (qPDFs). We show experiments about the deployment of qPDFs on real quantum devices, taking into consideration current experimental limitations. Finally, we perform a global qPDF determination from collider data using quantum computer simulation on classical hardware and we compare the obtained partons and related phenomenological predictions involving hadronic processes to modern PDFs.
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant because they are the first to have time-complexities that are comparable to the best known methods for simulating time-independent Hamiltonian evolution, given appropriate smoothness criteria on the Hamiltonian are satisfied. We provide a thorough cost analysis of these algorithms that considers discretizion errors in both the time and the representation of the Hamiltonian. In addition, we provide the first upper bounds for the error in Lie-Trotter-Suzuki approximations to unitary evolution operators, that use adaptively chosen time steps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا