ترغب بنشر مسار تعليمي؟ اضغط هنا

All order covariant tubular expansion

118   0   0.0 ( 0 )
 نشر من قبل Partha Mukhopadhyay
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider tubular neighborhood of an arbitrary submanifold embedded in a (pseudo-)Riemannian manifold. This can be described by Fermi normal coordinates (FNC) satisfying certain conditions as described by Florides and Synge in cite{FS}. By generalizing the work of Muller {it et al} in cite{muller} on Riemann normal coordinate expansion, we derive all order FNC expansion of vielbein in this neighborhood with closed form expressions for the curvature expansion coefficients. Our result is shown to be consistent with certain integral theorem for the metric proved in cite{FS}.



قيم البحث

اقرأ أيضاً

149 - Ilya L. Shapiro 2016
We present detailed pedagogical derivation of covariant derivative of fermions and some related expressions, including commutator of covariant derivatives and energy-momentum tensor of a free Dirac field. The text represents a part of the initial cha pter of a one-semester course on semiclassical gravity.
Exponential expansion in Unimodular Gravity is possible even in the absence of a constant potential; {em id est} for free fields. This is at variance with the case in General Relativity.
In the framework of spatially covariant gravity, it is natural to extend a gravitational theory by putting the lapse function $N$ and the spatial metric $h_{ij}$ on an equal footing. We find two sufficient and necessary conditions for ensuring two ph ysical degrees of freedom (DoF) for the theory with the lapse function being dynamical by Hamiltonian analysis. A class of quadratic actions with only two DoF is constructed. In the case that the coupling functions depend on $N$ only, we find that the spatial curvature term cannot enter the Lagrangian and thus this theory possesses no wave solution and cannot recover general relativity (GR). In the case that the coupling functions depend on the spatial derivatives of $N$, we perform a spatially conformal transformation on a class of quadratic actions with nondynamical lapse function to obtain a class of quadratic actions with $dot{N}$. We confirm this theory has two DoF by checking the two sufficient and necessary conditions. Besides, we find that a class of quadratic actions with two DoF can be transformed from GR by disformal transformation.
146 - Tomasz Korzec , Ulli Wolff 2012
We exactly rewrite the Z(2) lattice gauge theory with standard plaquette action as a random surface model equivalent to the untruncated set of its strong coupling graphs. By extending the worm approach applied to spin models we simulate such surfaces including Polyakov line defects that randomly walk over the lattice. Our Monte Carlo algorithms for the graph ensemble are reasonably efficient but not free of critical slowing down. Polyakov line correlators can be measured in this approach with small relative errors that are independent of the separation. As a first application our results are confronted with effective string theory predictions. In addition, the excess free energy due to twisted boundary conditions becomes an easily accessible observable. Our numerical experiments are in three dimensions, but the method is expected to work in any dimension.
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a caus e of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the $Lambda$CDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function $phi(t)$ here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا