ﻻ يوجد ملخص باللغة العربية
Defects in LiFeAs are studied by scanning tunneling microscopy (STM) and spectroscopy (STS). Topographic images of the five predominant defects allow the identification of their position within the lattice. The most commonly observed defect is associated with an Fe site and does not break the local lattice symmetry, exhibiting a bound state near the edge of the smaller gap in this multi-gap superconductor. Three other common defects, including one also on an Fe site, are observed to break local lattice symmetry and are pair-breaking indicated by clear in-gap bound states, in addition to states near the smaller gap edge. STS maps reveal complex, extended real-space bound state patterns, including one with a chiral distribution of the local density of states (LDOS). The multiple bound state resonances observed within the gaps and at the inner gap edge are consistent with theoretical predictions for s$^{pm}$ gap symmetry proposed for LiFeAs and other iron pnictides.
We present a microscopic investigation of frequently observed impurity-induced states in stoichiometric LiFeAs using low temperature scanning tunneling microscopy and spectroscopy (STM/STS). Our data reveal seven distinct well defined defects which a
We investigate the vortex lattice and vortex bound states in CsFe$_2$As$_2$ single crystals by scanning tunneling microscopy/spectroscopy (STM/STS) under various magnetic fields. A possible structural transition or crossover of vortex lattice is obse
We present Scanning Tunneling Spectroscopy measurements at 0.1 K using tips made of Al. At zero field, the atomic lattice and charge density wave of 2HNbSe2 are observed, and under magnetic fields the peculiar electronic surface properties of vortice
Scanning tunneling spectroscopy on gold layers over-coating textit{c}-axis $YBa_2Ca_3O_{7-delta}$ (YBCO) films reveals proximity induced gap structures. The gap size reduced exponentially with distance from textit{a}-axis facets, indicating that the
The superconducting compound, LiFeAs, is studied by scanning tunneling microscopy and spectroscopy. A gap map of the unreconstructed surface indicates a high degree of homogeneity in this system. Spectra at 2 K show two nodeless superconducting gaps