ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunneling spectroscopy of superconducting LiFeAs single crystals: Evidence for two nodeless energy gaps and coupling to a bosonic mode

98   0   0.0 ( 0 )
 نشر من قبل Sarah Burke
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconducting compound, LiFeAs, is studied by scanning tunneling microscopy and spectroscopy. A gap map of the unreconstructed surface indicates a high degree of homogeneity in this system. Spectra at 2 K show two nodeless superconducting gaps with $Delta_1=5.3pm0.1$ meV and $Delta_2=2.5pm0.2$ meV. The gaps close as the temperature is increased to the bulk $T_c$ indicating that the surface accurately represents the bulk. A dip-hump structure is observed below $T_c$ with an energy scale consistent with a magnetic resonance recently reported by inelastic neutron scattering.

قيم البحث

اقرأ أيضاً

Super-high resolution laser-based angle-resolved photoemission measurements are carried out on LiFeAs superconductor to investigate its electron dynamics. Three energy scales at $sim$20 meV, $sim$34 meV and $sim$55 meV are revealed for the first time in the electron self-energy both in the superconducting state and normal state. The $sim$20 meV and $sim$34 meV scales can be attributed to the coupling of electrons with sharp bosonic modes which are most likely phonons. These observations provide definitive evidence on the existence of mode coupling in iron-based superconductors.
102 - S. Grothe , Shun Chi , P. Dosanjh 2012
Defects in LiFeAs are studied by scanning tunneling microscopy (STM) and spectroscopy (STS). Topographic images of the five predominant defects allow the identification of their position within the lattice. The most commonly observed defect is associ ated with an Fe site and does not break the local lattice symmetry, exhibiting a bound state near the edge of the smaller gap in this multi-gap superconductor. Three other common defects, including one also on an Fe site, are observed to break local lattice symmetry and are pair-breaking indicated by clear in-gap bound states, in addition to states near the smaller gap edge. STS maps reveal complex, extended real-space bound state patterns, including one with a chiral distribution of the local density of states (LDOS). The multiple bound state resonances observed within the gaps and at the inner gap edge are consistent with theoretical predictions for s$^{pm}$ gap symmetry proposed for LiFeAs and other iron pnictides.
87 - F. Wei 2010
The zero-field specific heat of LiFeAs was measured on several single crystals selected from a bulk sample. A sharp Delta Cp/Tc anomaly of approximately 20 mJ/(mole x K^2) was observed. The value appears to be between those of SmFeAs(O0.9F0.1) and (B a0.6K0.4)Fe2As2, but bears no clear correlation with their Sommerfeld coefficients. The electronic specific heat below Tc further reveals a two-gap structure with the narrower one only on the order of 0.7 meV. While the results are in rough agreement with the Hc1(T) previously reported on both LiFeAs and (Ba0.6K0.4)Fe2As2, they are different from the published specific-heat data of a (Ba0.6K0.4)Fe2As2 single crystal.
We perform the scanning tunneling spectroscopy based superconductor-vacuum-superconductor analogue to the seminal McMillan and Rowell superconductor-insulator-superconductor device study of phonons in the archetypal elemental superconductor Pb [W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965)]. We invert this spectroscopic data utilizing strong-coupling Eliashberg theory to obtain a local {alpha}^2F({omega}) and find broad underlying agreement with the pioneering results, highlighted by previously unobserved electron-hole asymmetries and new fine structure which we discuss in terms of both conventional and unconventional superconducting bosonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا