ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunneling spectroscopy with superconducting tips of Al

131   0   0.0 ( 0 )
 نشر من قبل H. Suderow
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Scanning Tunneling Spectroscopy measurements at 0.1 K using tips made of Al. At zero field, the atomic lattice and charge density wave of 2HNbSe2 are observed, and under magnetic fields the peculiar electronic surface properties of vortices are precisely resolved. The tip density of states is influenced by the local magnetic field of the vortex, providing for a new probe of the magnetic field at nanometric sizes.



قيم البحث

اقرأ أيضاً

Unique superconductivity at surfaces/interfaces, as exemplified by LaAlO3/SrTiO3 interfaces, and the high transition temperature in ultrathin FeSe films, have triggered intense debates on how superconductivity is affected in atomic and electronic rec onstructions. The surface of superconducting cubic spinel oxide LiTi2O4 is another interesting system because its inherent surface electronic and atomic reconstructions add complexity to superconducting properties. Investigations of such surfaces are hampered by the lack of single crystals or high-quality thin films. Here, using low-temperature scanning tunneling microscopy, we report an unexpected small superconducting energy gap and a long coherence length on the surface of LiTi2O4 (111) epitaxial thin films. Furthermore, we find that a pseudogap opening at the Fermi energy modifies the surface superconductivity. Our results open an avenue, exploring anomalous superconductivity on the surface of cubic transition-metal oxides where the electronic states are spontaneously modulated with involving rich many-body interactions.
69 - A. Kohen , Y. Noat , T. Proslier 2004
We report a simple method for the fabrication of Niobium superconducting (SC) tips for scanning tunnelling microscopy which allow atomic resolution. The tips, formed in-situ by the mechanical breaking of a niobium wire, reveal a clear SC gap of 1.5 m eV and a critical temperature Tc=9.2+-0.3 K as deduced from Superconductor Insulator Normal metal (NIS) and Superconductor Insulator Superconductor (SIS) spectra. These match the values of bulk Nb samples. We systematically find an enhanced value of the critical magnetic field in which superconductivity in the tip is destroyed (around 1 T for some tips) up to five times larger than the critical field of bulk Nb (0.21 T). Such enhancement is attributed to a size effect at the tip apex
The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density-waves and quantum Hall insulators. Disting uishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors -- one single-Q and two double-Q phases. Our results open a promising avenue to investigate complex magnetic configurations in itinerant systems via standard scanning tunneling spectroscopy, without requiring spin-resolved capability.
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial supe rconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
139 - S. Grothe , Shun Chi , P. Dosanjh 2012
Defects in LiFeAs are studied by scanning tunneling microscopy (STM) and spectroscopy (STS). Topographic images of the five predominant defects allow the identification of their position within the lattice. The most commonly observed defect is associ ated with an Fe site and does not break the local lattice symmetry, exhibiting a bound state near the edge of the smaller gap in this multi-gap superconductor. Three other common defects, including one also on an Fe site, are observed to break local lattice symmetry and are pair-breaking indicated by clear in-gap bound states, in addition to states near the smaller gap edge. STS maps reveal complex, extended real-space bound state patterns, including one with a chiral distribution of the local density of states (LDOS). The multiple bound state resonances observed within the gaps and at the inner gap edge are consistent with theoretical predictions for s$^{pm}$ gap symmetry proposed for LiFeAs and other iron pnictides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا