ترغب بنشر مسار تعليمي؟ اضغط هنا

On the structure of zero-sum free set with minimum subset sums in abelian groups

76   0   0.0 ( 0 )
 نشر من قبل Jiangtao Peng
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be an additive abelian group and $Ssubset G$ a subset. Let $Sigma(S)$ denote the set of group elements which can be expressed as a sum of a nonempty subset of $S$. We say $S$ is zero-sum free if $0 otin Sigma(S)$. It was conjectured by R.B.~Eggleton and P.~Erd{o}s in 1972 and proved by W.~Gao et. al. in 2008 that $|Sigma(S)|geq 19$ provided that $S$ is a zero-sum free subset of an abelian group $G$ with $|S|=6$. In this paper, we determined the structure of zero-sum free set $S$ where $|S|=6$ and $|Sigma(S)|=19$.



قيم البحث

اقرأ أيضاً

The purpose of the article is to provide an unified way to formulate zero-sum invariants. Let $G$ be a finite additive abelian group. Let $B(G)$ denote the set consisting of all nonempty zero-sum sequences over G. For $Omega subset B(G$), let $d_{O mega}(G)$ be the smallest integer $t$ such that every sequence $S$ over $G$ of length $|S|geq t$ has a subsequence in $Omega$.We provide some first results and open problems on $d_{Omega}(G)$.
68 - Zhengjun Cao , Lihua Liu 2016
In 1990, Alon and Kleitman proposed an argument for the sum-free subset problem: every set of n nonzero elements of a finite Abelian group contains a sum-free subset A of size |A|>frac{2}{7}n. In this note, we show that the argument confused two diff erent randomness. It applies only to the finite Abelian group G = (Z/pZ)^s where p is a prime. For the general case, the problem remains open.
A subset $D$ of an Abelian group is $decomposable$ if $emptyset e Dsubset D+D$. In the paper we give partial answer to an open problem asking whether every finite decomposable subset $D$ of an Abelian group contains a non-empty subset $Zsubset D$ wit h $sum Z=0$. For every $ninmathbb N$ we present a decomposable subset $D$ of cardinality $|D|=n$ in the cyclic group of order $2^n-1$ such that $sum D=0$, but $sum T e 0$ for any proper non-empty subset $Tsubset D$. On the other hand, we prove that every decomposable subset $Dsubsetmathbb R$ of cardinality $|D|le 7$ contains a non-empty subset $Zsubset D$ of cardinality $|Z|lefrac12|D|$ with $sum Z=0$. For every $ninmathbb N$ we present a subset $Dsubsetmathbb Z$ of cardinality $|D|=2n$ such that $sum Z=0$ for some subset $Zsubset D$ of cardinality $|Z|=n$ and $sum T e 0$ for any non-empty subset $Tsubset D$ of cardinality $|T|<n=frac12|D|$. Also we prove that every finite decomposable subset $D$ of an Abelian group contains two non-empty subsets $A,B$ such that $sum A+sum B=0$.
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Let $vec{w} = (w_1,dots, w_n) in mathbb{R}^{n}$. We show that for any $n^{-2}leepsilonle 1$, if [#{vec{xi} in {0,1}^{n}: langle vec{xi}, vec{w} rangle = tau} ge 2^{-epsilon n}cdot 2^{n}] for some $tau in mathbb{R}$, then [#{langle vec{xi}, vec{w} ran gle : vec{xi} in {0,1}^{n}} le 2^{O(sqrt{epsilon}n)}.] This exponentially improves the $epsilon$ dependence in a recent result of Nederlof, Pawlewicz, Swennenhuis, and Wk{e}grzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا