ﻻ يوجد ملخص باللغة العربية
Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution (Hornos et al, Phys. Rev. E {bf 72}, 051907 (2005) and subsequent studies). We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.
A common model of stochastic auto-regulatory gene expression describes promoter switching via cooperative protein binding, effective protein production in the active state and dilution of proteins. Here we consider an extension of this model whereby
Auto-regulatory feedback loops are one of the most common network motifs. A wide variety of stochastic models have been constructed to understand how the fluctuations in protein numbers in these loops are influenced by the kinetic parameters of the m
Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging. MtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of th
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {bf147}, 1092 (2011)] sho
The bulk of stochastic gene expression models in the literature do not have an explicit description of the age of a cell within a generation and hence they cannot capture events such as cell division and DNA replication. Instead, many models incorpor