ﻻ يوجد ملخص باللغة العربية
Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging. MtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of the resulting mitochondrial networks in the time evolution of the cellular proportion of mutated mtDNA molecules (heteroplasmy), and cell-to-cell variability in heteroplasmy (heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly important since it modulates the number of pathological cells in a tissue. Here, we provide the first wide-reaching theoretical framework which bridges mitochondrial network and genetic states. We show that, under a range of conditions, the (genetic) rate of increase in heteroplasmy variance and de novo mutation are proportionally modulated by the (physical) fraction of unfused mitochondria, independently of the absolute fission-fusion rate. In the context of selective fusion, we show that intermediate fusion/fission ratios are optimal for the clearance of mtDNA mutants. Our findings imply that modulating network state, mitophagy rate and copy number to slow down heteroplasmy dynamics when mean heteroplasmy is low could have therapeutic advantages for mitochondrial disease and healthy aging.
Cell-to-cell heterogeneity drives a range of (patho)physiologically important phenomena, such as cell fate and chemotherapeutic resistance. The role of metabolism, and particularly mitochondria, is increasingly being recognised as an important explan
Does regulation in the genome use collective behavior, similar to the way the brain or deep neural networks operate? Here I make the case for why having a genomic network capable of a high level of computation would be strongly selected for, and sugg
Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory
Auto-regulatory feedback loops are one of the most common network motifs. A wide variety of stochastic models have been constructed to understand how the fluctuations in protein numbers in these loops are influenced by the kinetic parameters of the m
We introduce and parameterize a chemomechanical model of microtubule dynamics on the dimer level, which is based on the allosteric tubulin model and includes attachment, detachment and hydrolysis of tubulin dimers as well as stretching of lateral bon