ﻻ يوجد ملخص باللغة العربية
The bulk of stochastic gene expression models in the literature do not have an explicit description of the age of a cell within a generation and hence they cannot capture events such as cell division and DNA replication. Instead, many models incorporate cell cycle implicitly by assuming that dilution due to cell division can be described by an effective decay reaction with first-order kinetics. If it is further assumed that protein production occurs in bursts then the stationary protein distribution is a negative binomial. Here we seek to understand how accurate these implicit models are when compared with more detailed models of stochastic gene expression. We derive the exact stationary solution of the chemical master equation describing bursty protein dynamics, binomial partitioning at mitosis, age-dependent transcription dynamics including replication, and random interdivision times sampled from Erlang or more general distributions; the solution is different for single lineage and population snapshot settings. We show that protein distributions are well approximated by the solution of implicit models (a negative binomial) when the mean number of mRNAs produced per cycle is low and the cell cycle length variability is large. When these conditions are not met, the distributions are either almost bimodal or else display very flat regions near the mode and cannot be described by implicit models. We also show that for genes with low transcription rates, the size of protein noise has a strong dependence on the replication time, it is almost independent of cell cycle variability for lineage measurements and increases with cell cycle variability for population snapshot measurements. In contrast for large transcription rates, the size of protein noise is independent of replication time and increases with cell cycle variability for both lineage and population measurements.
A stochastic model of autoregulated bursty gene expression by Kumar et al. [Phys. Rev. Lett. 113, 268105 (2014)] has been exactly solved in steady-state conditions under the implicit assumption that protein numbers are sufficiently large such that fl
In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell f
The arabinose utilization system of E. coli displays a stochastic all or nothing response at intermediate levels of arabinose, where the population divides into a fraction catabolizing the sugar at a high rate (ON state) and a fraction not utilizing
With the wealth of high-throughput sequencing data generated by recent large-scale consortia, predictive gene expression modelling has become an important tool for integrative analysis of transcriptomic and epigenetic data. However, sequencing data-s
Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from si