ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hawaii Infrared Parallax Program. I. Ultracool Binaries and the L/T Transition

131   0   0.0 ( 0 )
 نشر من قبل Trent Dupuy
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Trent J. Dupuy




اسأل ChatGPT حول البحث

We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6--T9) in 49 systems, with a median uncertainty of 1.1 mas (2.3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7x (5x). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASSJ0518-2828AB and 2MASSJ1404-3159AB) and one is spectrally peculiar (SDSSJ0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6--T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from approxL8 to approxT4.5, flux in the Y and J bands increases by approx0.7 mag and approx0.5 mag, respectively (the Y- and J-band bumps), while flux in the H, K, and L bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0--1.3 micron. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color--magnitude diagram just blueward of the late-L/early-T sequence. This L/T gap occurs at MKO(J-H) = 0.1--0.3 mag, MKO(J-K) = 0.0--0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.



قيم البحث

اقرأ أيضاً

We present parallaxes, proper motions, and $J$-band photometry for 348 L and T dwarfs measured using the wide-field near-infrared camera WFCAM on the United Kingdom Infrared Telescope. This is the largest single batch of infrared parallaxes for brown dwarfs to date. Our parallaxes have a median uncertainty of 3.5 mas, similar to most previous ground-based infrared parallax surveys. Our target list was designed to complete a volume-limited parallax sample of L0-T8 dwarfs out to 25 pc spanning declinations $-30^circ$ to $+60^circ$ (68% of the sky). We report the first parallaxes for 165 objects, and we improve on previous measurements for another 53 objects. Our targets include 104 objects (mostly early-L dwarfs) having $Gaia$ DR2 parallax measurements, with which our parallaxes are consistent. We include an extensive comparison of previous literature parallaxes for L and T dwarfs with both our results and $Gaia$ DR2 measurements, identifying systematic offsets for some previous surveys. Our parallaxes confirm that 14 objects previously identified as wide common proper motion companions to main-sequence stars have distances consistent with companionship. We also report new $J_mathrm{MKO}$ photometry for our targets, including the first measurements for 193 of our targets and improvements over previously published $J_mathrm{MKO}$ photometry for another 60 targets. Altogether, our parallaxes will enable the first population studies using a volume-limited sample spanning spectral types L0-T8 defined entirely by parallaxes.
394 - Zhoujian Zhang 2021
We present a search for new planetary-mass members of nearby young moving groups (YMGs) using astrometry for 694 T and Y dwarfs, including 447 objects with parallaxes, mostly produced by recent large parallax programs from UKIRT and Spitzer. Using th e BANYAN $Sigma$ and LACEwING algorithms, we identify 30 new candidate YMG members, with spectral types of T0$-$T9 and distances of $10-43$ pc. Some candidates have unusually red colors and/or faint absolute magnitudes compared to field dwarfs with similar spectral types, providing supporting evidence for their youth, including 4 early-T dwarfs. We establish one of these, the variable T1.5 dwarf 2MASS J21392676$+$0220226, as a new planetary-mass member ($14.6^{+3.2}_{-1.6}$ M$_{rm Jup}$) of the Carina-Near group ($200pm50$ Myr) based on its full six-dimensional kinematics, including a new parallax measurement from CFHT. The high-amplitude variability of this object is suggestive of a young age, given the coexistence of variability and youth seen in previously known YMG T dwarfs. Our four latest-type (T8$-$T9) YMG candidates, WISE J031624.35$+$430709.1, ULAS J130217.21$+$130851.2, WISEPC J225540.74$-$311841.8, and WISE J233226.49$-$432510.6, if confirmed, will be the first free-floating planets ($approx2-6$ M$_{rm Jup}$) whose ages and luminosities are compatible with both hot-start and cold-start evolutionary models, and thus overlap the properties of the directly-imaged planet 51 Eri b. Several of our early/mid-T candidates have peculiar near-infrared spectra, indicative of heterogenous photospheres or unresolved binarity. Radial velocity measurements needed for final membership assessment for most of our candidates await upcoming 20$-$30 meter class telescopes. In addition, we compile all 15 known T7$-$Y1 benchmarks and derive a homogeneous set of their effective temperatures, surface gravities, radii, and masses.
We present a new volume-limited sample of L0-T8 dwarfs out to 25 pc defined entirely by parallaxes, using our recent measurements from UKIRT/WFCAM along with Gaia DR2 and literature parallaxes. With 369 members, our sample is the largest parallax-def ined volume-limited sample of L and T dwarfs to date, yielding the most precise space densities for such objects. We find the local L0-T8 dwarf population includes $5.5%pm1.3%$ young objects ($lesssim$200 Myr) and $2.6%pm1.6%$ subdwarfs, as expected from recent studies favoring representative ages $lesssim$4 Gyr for the ultracool field population. This is also the first volume-limited sample to comprehensively map the transition from L to T dwarfs (spectral types $approx$L8-T4). After removing binaries, we identify a previously unrecognized, statistically significant (>4.4$sigma$) gap $approx$0.5 mag wide in $(J-K)_{rm MKO}$ colors in the L/T transition, i.e., a lack of such objects in our volume-limited sample, implying a rapid phase of atmospheric evolution. In contrast, the most successful models of the L/T transition to date $-$ the hybrid models of Saumon & Marley (2008) $-$ predict a pile-up of objects at the same colors where we find a deficit, demonstrating the challenge of modeling the atmospheres of cooling brown dwarfs. Our sample illustrates the insights to come from even larger parallax-selected samples from the upcoming Legacy Survey of Space and Time (LSST) by the Vera Rubin Obsevatory.
We identify and investigate known ultracool stars and brown dwarfs that are being observed or indirectly constrained by the Gaia mission. These objects will be the core of the Gaia ultracool dwarf sample composed of all dwarfs later than M7 that Gaia will provide direct or indirect information on. We match known L and T dwarfs to the Gaia first data release, the Two Micron All Sky Survey and the Wide-field Infrared Survey Explorer AllWISE survey and examine the Gaia and infrared colours, along with proper motions, to improve spectral typing, identify outliers and find mismatches. There are 321 L and T dwarfs observed directly in the Gaia first data release, of which 10 are later than L7. This represents 45 % of all the known LT dwarfs with estimated Gaia G magnitudes brighter than 20.3 mag. We determine proper motions for the 321 objects from Gaia and the Two Micron All Sky Survey positions. Combining the Gaia and infrared magnitudes provides useful diagnostic diagrams for the determination of L and T dwarf physical parameters. We then search the Tycho-Gaia astrometric solution Gaia first data release subset to find any objects with common proper motions to known L and T dwarfs and a high probability of being related. We find 15 new candidate common proper motion systems.
88 - Genaro Suarez 2021
We present $Spitzer$ IRS 5--14 $mu$m spectra and 16 $mu$m and 22 $mu$m photometry of the T2.5 companion to the $sim$300 Myr-old G0V star HN Peg. We incorporate previous 0.8--5 $mu$m observations to obtain the most comprehensive spectral energy distri bution of an intermediate-gravity L/T-transition dwarf which, together with an accurate Gaia EDR3 parallax of the primary, enable us to derive precise fundamental parameters. We find that young ($approx$0.1--0.3 Gyr) early-T dwarfs on average have $approx$140 K lower effective temperatures, $approx$20% larger radii, and similar bolometric luminosities compared to $gtrsim$1 Gyr-old field dwarfs with similar spectral types. Our accurate infrared spectrophotometry offers new detail at wavelengths where the dominant carbon-bearing molecules have their strongest transitions: at 3.4 $mu$m for methane and at 4.6 $mu$m for carbon monoxide. We assess the performance of various widely available photospheric models and find that models with condensates and/or clouds better reproduce the full SED of this moderately young early-T dwarf. However, cloud-free models incorporating a more general convective instability treatment reproduce at least the low-resolution near-IR spectrum similarly well. Our analysis of $Rapprox2300$ $J$-band spectra shows that the near-infrared potassium absorption lines in HN Peg B have similar strengths to those seen in both younger and older T2-T3 dwarfs. We conclude that while alkali lines are well-established as surface gravity indicators for L-type or warmer stars, they are insensitive to surface gravity in early-T dwarfs
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا