ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia Ultracool Dwarf Sample. I. Known L and T dwarfs and the first Gaia data release

373   0   0.0 ( 0 )
 نشر من قبل Richard Smart
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify and investigate known ultracool stars and brown dwarfs that are being observed or indirectly constrained by the Gaia mission. These objects will be the core of the Gaia ultracool dwarf sample composed of all dwarfs later than M7 that Gaia will provide direct or indirect information on. We match known L and T dwarfs to the Gaia first data release, the Two Micron All Sky Survey and the Wide-field Infrared Survey Explorer AllWISE survey and examine the Gaia and infrared colours, along with proper motions, to improve spectral typing, identify outliers and find mismatches. There are 321 L and T dwarfs observed directly in the Gaia first data release, of which 10 are later than L7. This represents 45 % of all the known LT dwarfs with estimated Gaia G magnitudes brighter than 20.3 mag. We determine proper motions for the 321 objects from Gaia and the Two Micron All Sky Survey positions. Combining the Gaia and infrared magnitudes provides useful diagnostic diagrams for the determination of L and T dwarf physical parameters. We then search the Tycho-Gaia astrometric solution Gaia first data release subset to find any objects with common proper motions to known L and T dwarfs and a high probability of being related. We find 15 new candidate common proper motion systems.



قيم البحث

اقرأ أيضاً

We produce a clean and well-characterised catalogue of objects within 100,pc of the Sun from the G Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use. The selection of objects within 100,pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100,pc is included in the catalogue. We have produced a catalogue of NFINAL objects that we estimate contains at least 92% of stars of stellar type M9 within 100,pc of the Sun. We estimate that 9% of the stars in this catalogue probably lie outside 100,pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of G Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10,pc of the Sun.
The second Gaia data release (Gaia-DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. We have used these three broad bands to infer stellar effective temperatures, Teff, for all sources brighter than G=17 mag with T eff in the range 3000-10 000 K (161 million sources). Using in addition the parallaxes, we infer the line-of-sight extinction, A_G, and the reddening, E[BP-RP], for 88 million sources. Together with a bolometric correction we derive luminosity and radius for 77 million sources. These quantities as well as their estimated uncertainties are part of Gaia-DR2. Here we describe the procedures by which these quantities were obtained, including the underlying assumptions, comparison with literature estimates, and the limitations of our results. Typical accuracies are of order 324 K (Teff), 0.46 mag (A_G), 0.23 mag (E[BP-RP]), 15% (luminosity), and 10% (radius). Being based on only a small number of observable quantities and limited training data, our results are necessarily subject to some extreme assumptions that can lead to strong systematics in some cases (not included in the aforementioned accuracy estimates). One aspect is the non-negativity contraint of our estimates, in particular extinction. Yet in several regions of parameter space our results show very good performance, for example for red clump stars and solar analogues. Large uncertainties render the extinctions less useful at the individual star level, but they show good performance for ensemble estimates. We identify regimes in which our parameters should and should not be used and we define a clean sample. Despite the limitations, this is the largest catalogue of uniformly-inferred stellar parameters to date. More precise and detailed astrophysical parameters based on the full BP/RP spectrophotometry are planned as part of the third Gaia data release.
Gaia DR2 provides a unique all-sky catalogue of 550737 variable stars, of which 151761 are long-period variable (LPV) candidates with G variability amplitudes larger than 0.2 mag (5-95% quantile range). About one-fifth of the LPV candidates are Mira candidates, the majority of the rest are semi-regular variable candidates. For each source, G, BP , and RP photometric time-series are published, together with some LPV-specific attributes for the subset of 89617 candidates with periods in G longer than 60 days. We describe this first Gaia catalogue of LPV candidates, and present various validation checks. Various samples of LPVs were used to validate the catalogue: a sample of well-studied very bright LPVs with light curves from the AAVSO that are partly contemporaneous with Gaia light curves, a sample of Gaia LPV candidates with good parallaxes, the ASAS_SN catalogue of LPVs, and the OGLE catalogues of LPVs towards the Magellanic Clouds and the Galactic bulge. The analyses of these samples show a good agreement between Gaia DR2 and literature periods. The same is globally true for bolometric corrections of M-type stars. The main contaminant of our DR2 catalogue comes from young stellar objects (YSOs) in the solar vicinity (within ~1 kpc), although their number in the whole catalogue is only at the percent level. A cautionary note is provided about parallax-dependent LPV attributes published in the catalogue. This first Gaia catalogue of LPVs approximately doubles the number of known LPVs with amplitudes larger than 0.2 mag, despite the conservative candidate selection criteria that prioritise low contamination over high completeness, and despite the limited DR2 time coverage compared to the long periods characteristic of LPVs. It also contains a small set of YSO candidates, which offers the serendipitous opportunity to study these objects at an early stage of the Gaia data releases.
We present a new volume-limited sample of L0-T8 dwarfs out to 25 pc defined entirely by parallaxes, using our recent measurements from UKIRT/WFCAM along with Gaia DR2 and literature parallaxes. With 369 members, our sample is the largest parallax-def ined volume-limited sample of L and T dwarfs to date, yielding the most precise space densities for such objects. We find the local L0-T8 dwarf population includes $5.5%pm1.3%$ young objects ($lesssim$200 Myr) and $2.6%pm1.6%$ subdwarfs, as expected from recent studies favoring representative ages $lesssim$4 Gyr for the ultracool field population. This is also the first volume-limited sample to comprehensively map the transition from L to T dwarfs (spectral types $approx$L8-T4). After removing binaries, we identify a previously unrecognized, statistically significant (>4.4$sigma$) gap $approx$0.5 mag wide in $(J-K)_{rm MKO}$ colors in the L/T transition, i.e., a lack of such objects in our volume-limited sample, implying a rapid phase of atmospheric evolution. In contrast, the most successful models of the L/T transition to date $-$ the hybrid models of Saumon & Marley (2008) $-$ predict a pile-up of objects at the same colors where we find a deficit, demonstrating the challenge of modeling the atmospheres of cooling brown dwarfs. Our sample illustrates the insights to come from even larger parallax-selected samples from the upcoming Legacy Survey of Space and Time (LSST) by the Vera Rubin Obsevatory.
We analyse the 100pc Gaia white dwarf volume-limited sample by means of VOSA (Virtual Observatory SED Analyser) with the aim of identifying candidates for displaying infrared excesses. Our search focuses on the study of the spectral energy distributi on (SED) of 3,733 white dwarfs with reliable infrared photometry and GBP-GRP colours below 0.8 mag, a sample which seems to be nearly representative of the overall white dwarf population. Our search results in 77 selected candidates, 52 of which are new identifications. For each target we apply a two-component SED fitting implemented in VOSA to derive the effective temperatures of both the white dwarf and the object causing the excess. We calculate a fraction of infrared-excess white dwarfs due to the presence of a circumstellar disk of 1.6+-0.2%, a value which increases to 2.6+-0.3% if we take into account incompleteness issues. Our results are in agreement with the drop in the percentage of infrared excess detections for cool (<8,000K) and hot (>20,000K) white dwarfs obtained in previous analyses. The fraction of white dwarfs with brown dwarf companions we derive is ~0.1-0.2%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا